You are previewing Mining the Social Web.

Mining the Social Web

Cover of Mining the Social Web by Matthew A. Russell Published by O'Reilly Media, Inc.
  1. Mining the Social Web
  2. SPECIAL OFFER: Upgrade this ebook with O’Reilly
  3. Preface
    1. Content Updates
      1. February 22, 2012
    2. To Read This Book?
    3. Or Not to Read This Book?
    4. Tools and Prerequisites
    5. Conventions Used in This Book
    6. Using Code Examples
    7. Safari® Books Online
    8. How to Contact Us
    9. Acknowledgments
  4. 1. Introduction: Hacking on Twitter Data
    1. Installing Python Development Tools
    2. Collecting and Manipulating Twitter Data
      1. Tinkering with Twitter’s API
      2. Frequency Analysis and Lexical Diversity
      3. Visualizing Tweet Graphs
      4. Synthesis: Visualizing Retweets with Protovis
    3. Closing Remarks
  5. 2. Microformats: Semantic Markup and Common Sense Collide
    1. XFN and Friends
    2. Exploring Social Connections with XFN
      1. A Breadth-First Crawl of XFN Data
    3. Geocoordinates: A Common Thread for Just About Anything
      1. Wikipedia Articles + Google Maps = Road Trip?
    4. Slicing and Dicing Recipes (for the Health of It)
    5. Collecting Restaurant Reviews
    6. Summary
  6. 3. Mailboxes: Oldies but Goodies
    1. mbox: The Quick and Dirty on Unix Mailboxes
    2. mbox + CouchDB = Relaxed Email Analysis
      1. Bulk Loading Documents into CouchDB
      2. Sensible Sorting
      3. Map/Reduce-Inspired Frequency Analysis
      4. Sorting Documents by Value
      5. couchdb-lucene: Full-Text Indexing and More
    3. Threading Together Conversations
      1. Look Who’s Talking
    4. Visualizing Mail “Events” with SIMILE Timeline
    5. Analyzing Your Own Mail Data
      1. The Graph Your (Gmail) Inbox Chrome Extension
    6. Closing Remarks
  7. 4. Twitter: Friends, Followers, and Setwise Operations
    1. RESTful and OAuth-Cladded APIs
      1. No, You Can’t Have My Password
    2. A Lean, Mean Data-Collecting Machine
      1. A Very Brief Refactor Interlude
      2. Redis: A Data Structures Server
      3. Elementary Set Operations
      4. Souping Up the Machine with Basic Friend/Follower Metrics
      5. Calculating Similarity by Computing Common Friends and Followers
      6. Measuring Influence
    3. Constructing Friendship Graphs
      1. Clique Detection and Analysis
      2. The Infochimps “Strong Links” API
      3. Interactive 3D Graph Visualization
    4. Summary
  8. 5. Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet
    1. Pen : Sword :: Tweet : Machine Gun (?!?)
    2. Analyzing Tweets (One Entity at a Time)
      1. Tapping (Tim’s) Tweets
      2. Who Does Tim Retweet Most Often?
      3. What’s Tim’s Influence?
      4. How Many of Tim’s Tweets Contain Hashtags?
    3. Juxtaposing Latent Social Networks (or #JustinBieber Versus #TeaParty)
      1. What Entities Co-Occur Most Often with #JustinBieber and #TeaParty Tweets?
      2. On Average, Do #JustinBieber or #TeaParty Tweets Have More Hashtags?
      3. Which Gets Retweeted More Often: #JustinBieber or #TeaParty?
      4. How Much Overlap Exists Between the Entities of #TeaParty and #JustinBieber Tweets?
    4. Visualizing Tons of Tweets
      1. Visualizing Tweets with Tricked-Out Tag Clouds
      2. Visualizing Community Structures in Twitter Search Results
    5. Closing Remarks
  9. 6. LinkedIn: Clustering Your Professional Network for Fun (and Profit?)
    1. Motivation for Clustering
    2. Clustering Contacts by Job Title
      1. Standardizing and Counting Job Titles
      2. Common Similarity Metrics for Clustering
      3. A Greedy Approach to Clustering
      4. Hierarchical and k-Means Clustering
    3. Fetching Extended Profile Information
    4. Geographically Clustering Your Network
      1. Mapping Your Professional Network with Google Earth
      2. Mapping Your Professional Network with Dorling Cartograms
    5. Closing Remarks
  10. 7. Google+: TF-IDF, Cosine Similarity, and Collocations
    1. Harvesting Google+ Data
    2. Data Hacking with NLTK
    3. Text Mining Fundamentals
      1. A Whiz-Bang Introduction to TF-IDF
      2. Querying Google+ Data with TF-IDF
    4. Finding Similar Documents
      1. The Theory Behind Vector Space Models and Cosine Similarity
      2. Clustering Posts with Cosine Similarity
      3. Visualizing Similarity with Graph Visualizations
    5. Bigram Analysis
      1. How the Collocation Sausage Is Made: Contingency Tables and Scoring Functions
    6. Tapping into Your Gmail
      1. Accessing Gmail with OAuth
      2. Fetching and Parsing Email Messages
    7. Before You Go Off and Try to Build a Search Engine…
    8. Closing Remarks
  11. 8. Blogs et al.: Natural Language Processing (and Beyond)
    1. NLP: A Pareto-Like Introduction
      1. Syntax and Semantics
      2. A Brief Thought Exercise
    2. A Typical NLP Pipeline with NLTK
    3. Sentence Detection in Blogs with NLTK
    4. Summarizing Documents
      1. Analysis of Luhn’s Summarization Algorithm
    5. Entity-Centric Analysis: A Deeper Understanding of the Data
      1. Quality of Analytics
    6. Closing Remarks
  12. 9. Facebook: The All-in-One Wonder
    1. Tapping into Your Social Network Data
      1. From Zero to Access Token in Under 10 Minutes
      2. Facebook’s Query APIs
    2. Visualizing Facebook Data
      1. Visualizing Your Entire Social Network
      2. Visualizing Mutual Friendships Within Groups
      3. Where Have My Friends All Gone? (A Data-Driven Game)
      4. Visualizing Wall Data As a (Rotating) Tag Cloud
    3. Closing Remarks
  13. 10. The Semantic Web: A Cocktail Discussion
    1. An Evolutionary Revolution?
    2. Man Cannot Live on Facts Alone
      1. Open-World Versus Closed-World Assumptions
      2. Inferencing About an Open World with FuXi
    3. Hope
  14. Index
  15. About the Author
  16. Colophon
  17. SPECIAL OFFER: Upgrade this ebook with O’Reilly

Threading Together Conversations

As a first attempt at threading conversations, you might start with some basic string heuristics on the Subject header of the message and eventually get to the point where you’re inspecting senders, recipients, and date stamps in an attempt to piece things together. Fortunately, mail servers are slightly more sophisticated than you might think and, as you know from mbox: The Quick and Dirty on Unix Mailboxes, there are Message-ID, In-Reply-To, and References headers that can be used to extract conversations from messages in a mailbox. A message threading algorithm commonly known as “jwz threading,”[20] takes all of this into account and provides a reasonable approach to parsing out message threads. All of the specifics for the algorithm can be found online at The implementation we’ll be using is a fairly straightforward modification[21] of the one found in the Mail Trends project, which provides some other useful out-of-the-box tools. Given that no checkins for the project hosted on Google Code have occurred since early 2008, it’s unclear whether Mail Trends is being actively maintained anywhere, but the project nonetheless provides a useful starting point for mail analysis, as evidenced by the salvaging of jwz threading.

Let’s go ahead and take a look at the overall workflow in Example 3-14, and then we’ll dive into a few more of the details.

Example 3-14. Creating discussion threads from mbox data via “jwz threading” ...

The best content for your career. Discover unlimited learning on demand for around $1/day.