You are previewing Learning Java, 4th Edition.

Learning Java, 4th Edition

Cover of Learning Java, 4th Edition by Daniel Leuck... Published by O'Reilly Media, Inc.
  1. Learning Java
  2. Preface
    1. Who Should Read This Book
    2. New Developments
      1. New in This Edition (Java 6 and 7)
    3. Using This Book
    4. Online Resources
    5. Conventions Used in This Book
    6. Using Code Examples
    7. Safari® Books Online
    8. How to Contact Us
    9. Acknowledgments
  3. 1. A Modern Language
    1. Enter Java
      1. Java’s Origins
      2. Growing Up
    2. A Virtual Machine
    3. Java Compared with Other Languages
    4. Safety of Design
      1. Simplify, Simplify, Simplify...
      2. Type Safety and Method Binding
      3. Incremental Development
      4. Dynamic Memory Management
      5. Error Handling
      6. Threads
      7. Scalability
    5. Safety of Implementation
      1. The Verifier
      2. Class Loaders
      3. Security Managers
    6. Application and User-Level Security
    7. A Java Road Map
      1. The Past: Java 1.0–Java 1.6
      2. The Present: Java 7
      3. The Future
      4. Availability
  4. 2. A First Application
    1. Java Tools and Environment
    2. Configuring Eclipse and Creating a Project
      1. Importing the Learning Java Examples
    3. HelloJava
      1. Classes
      2. The main() Method
      3. Classes and Objects
      4. Variables and Class Types
      5. HelloComponent
      6. Inheritance
      7. The JComponent Class
      8. Relationships and Finger Pointing
      9. Package and Imports
      10. The paintComponent() Method
    4. HelloJava2: The Sequel
      1. Instance Variables
      2. Constructors
      3. Events
      4. The repaint() Method
      5. Interfaces
    5. HelloJava3: The Button Strikes!
      1. Method Overloading
      2. Components
      3. Containers
      4. Layout
      5. Subclassing and Subtypes
      6. More Events and Interfaces
      7. Color Commentary
      8. Static Members
      9. Arrays
      10. Our Color Methods
    6. HelloJava4: Netscape’s Revenge
      1. Threads
      2. The Thread Class
      3. The Runnable Interface
      4. Starting the Thread
      5. Running Code in the Thread
      6. Exceptions
      7. Synchronization
  5. 3. Tools of the Trade
    1. JDK Environment
    2. The Java VM
    3. Running Java Applications
      1. System Properties
    4. The Classpath
      1. javap
    5. The Java Compiler
    6. JAR Files
      1. File Compression
      2. The jar Utility
      3. The pack200 Utility
    7. Policy Files
      1. The Default Security Manager
      2. The policytool Utility
      3. Using a Policy File with the Default Security Manager
  6. 4. The Java Language
    1. Text Encoding
    2. Comments
      1. Javadoc Comments
    3. Types
      1. Primitive Types
      2. Reference Types
      3. A Word About Strings
    4. Statements and Expressions
      1. Statements
      2. Expressions
    5. Exceptions
      1. Exceptions and Error Classes
      2. Exception Handling
      3. Bubbling Up
      4. Stack Traces
      5. Checked and Unchecked Exceptions
      6. Throwing Exceptions
      7. try Creep
      8. The finally Clause
      9. Try with Resources
      10. Performance Issues
    6. Assertions
      1. Enabling and Disabling Assertions
      2. Using Assertions
    7. Arrays
      1. Array Types
      2. Array Creation and Initialization
      3. Using Arrays
      4. Anonymous Arrays
      5. Multidimensional Arrays
      6. Inside Arrays
  7. 5. Objects in Java
    1. Classes
      1. Accessing Fields and Methods
      2. Static Members
    2. Methods
      1. Local Variables
      2. Shadowing
      3. Static Methods
      4. Initializing Local Variables
      5. Argument Passing and References
      6. Wrappers for Primitive Types
      7. Autoboxing and Unboxing of Primitives
      8. Variable-Length Argument Lists
      9. Method Overloading
    3. Object Creation
      1. Constructors
      2. Working with Overloaded Constructors
      3. Static and Nonstatic Initializer Blocks
    4. Object Destruction
      1. Garbage Collection
      2. Finalization
      3. Weak and Soft References
    5. Enumerations
      1. Enum Values
      2. Customizing Enumerations
  8. 6. Relationships Among Classes
    1. Subclassing and Inheritance
      1. Shadowed Variables
      2. Overriding Methods
      3. Special References: this and super
      4. Casting
      5. Using Superclass Constructors
      6. Full Disclosure: Constructors and Initialization
      7. Abstract Methods and Classes
    2. Interfaces
      1. Interfaces as Callbacks
      2. Interface Variables
      3. Subinterfaces
    3. Packages and Compilation Units
      1. Compilation Units
      2. Package Names
      3. Class Visibility
      4. Importing Classes
    4. Visibility of Variables and Methods
      1. Basic Access Modifiers
      2. Subclasses and Visibility
      3. Interfaces and Visibility
    5. Arrays and the Class Hierarchy
      1. ArrayStoreException
    6. Inner Classes
      1. Inner Classes as Adapters
      2. Inner Classes Within Methods
  9. 7. Working with Objects and Classes
    1. The Object Class
      1. Equality and Equivalence
      2. Hashcodes
      3. Cloning Objects
    2. The Class Class
    3. Reflection
      1. Modifiers and Security
      2. Accessing Fields
      3. Accessing Methods
      4. Accessing Constructors
      5. What About Arrays?
      6. Accessing Generic Type Information
      7. Accessing Annotation Data
      8. Dynamic Interface Adapters
      9. What Is Reflection Good For?
    4. Annotations
      1. Using Annotations
      2. Standard Annotations
      3. The apt Tool
  10. 8. Generics
    1. Containers: Building a Better Mousetrap
      1. Can Containers Be Fixed?
    2. Enter Generics
      1. Talking About Types
    3. “There Is No Spoon”
      1. Erasure
      2. Raw Types
    4. Parameterized Type Relationships
      1. Why Isn’t a List<Date> a List<Object>?
    5. Casts
    6. Writing Generic Classes
      1. The Type Variable
      2. Subclassing Generics
      3. Exceptions and Generics
      4. Parameter Type Limitations
    7. Bounds
      1. Erasure and Bounds (Working with Legacy Code)
    8. Wildcards
      1. A Supertype of All Instantiations
      2. Bounded Wildcards
      3. Thinking Outside the Container
      4. Lower Bounds
      5. Reading, Writing, and Arithmetic
      6. <?>, <Object>, and the Raw Type
      7. Wildcard Type Relationships
    9. Generic Methods
      1. Generic Methods Introduced
      2. Type Inference from Arguments
      3. Type Inference from Assignment Context
      4. Explicit Type Invocation
      5. Wildcard Capture
      6. Wildcard Types Versus Generic Methods
    10. Arrays of Parameterized Types
      1. Using Array Types
      2. What Good Are Arrays of Generic Types?
      3. Wildcards in Array Types
    11. Case Study: The Enum Class
    12. Case Study: The sort() Method
    13. Conclusion
  11. 9. Threads
    1. Introducing Threads
      1. The Thread Class and the Runnable Interface
      2. Controlling Threads
      3. Death of a Thread
    2. Threading an Applet
      1. Issues Lurking
    3. Synchronization
      1. Serializing Access to Methods
      2. Accessing class and instance Variables from Multiple Threads
      3. The wait() and notify() Methods
      4. Passing Messages
      5. ThreadLocal Objects
    4. Scheduling and Priority
      1. Thread State
      2. Time-Slicing
      3. Priorities
      4. Yielding
    5. Thread Groups
      1. Working with ThreadGroups
      2. Uncaught Exceptions
    6. Thread Performance
      1. The Cost of Synchronization
      2. Thread Resource Consumption
    7. Concurrency Utilities
      1. Executors
      2. Locks
      3. Synchronization Constructs
      4. Atomic Operations
    8. Conclusion
  12. 10. Working with Text
    1. Text-Related APIs
    2. Strings
      1. Constructing Strings
      2. Strings from Things
      3. Comparing Strings
      4. Searching
      5. Editing
      6. String Method Summary
      7. StringBuilder and StringBuffer
    3. Internationalization
      1. The java.util.Locale Class
      2. Resource Bundles
    4. Parsing and Formatting Text
      1. Parsing Primitive Numbers
      2. Tokenizing Text
    5. Printf-Style Formatting
      1. Formatter
      2. The Format String
      3. String Conversions
      4. Primitive and Numeric Conversions
      5. Flags
      6. Miscellaneous
    6. Formatting with the java.text Package
      1. MessageFormat
    7. Regular Expressions
      1. Regex Notation
      2. The java.util.regex API
  13. 11. Core Utilities
    1. Math Utilities
      1. The java.lang.Math Class
      2. Big/Precise Numbers
      3. Floating-Point Components
      4. Random Numbers
    2. Dates and Times
      1. Working with Calendars
      2. Time Zones
      3. Parsing and Formatting with DateFormat
      4. Printf-Style Date and Time Formatting
    3. Timers
    4. Collections
      1. The Collection Interface
      2. Iterator
      3. Collection Types
      4. The Map Interface
      5. Collection Implementations
      6. Hash Codes and Key Values
      7. Synchronized and Unsynchronized Collections
      8. Read-Only and Read-Mostly Collections
      9. WeakHashMap
      10. EnumSet and EnumMap
      11. Sorting Collections
      12. A Thrilling Example
    5. Properties
      1. Loading and Storing
      2. System Properties
    6. The Preferences API
      1. Preferences for Classes
      2. Preferences Storage
      3. Change Notification
    7. The Logging API
      1. Overview
      2. Logging Levels
      3. A Simple Example
      4. Logging Setup Properties
      5. The Logger
      6. Performance
    8. Observers and Observables
  14. 12. Input/Output Facilities
    1. Streams
      1. Basic I/O
      2. Character Streams
      3. Stream Wrappers
      4. Pipes
      5. Streams from Strings and Back
      6. Implementing a Filter Stream
    2. File I/O
      1. The java.io.File Class
      2. File Streams
      3. RandomAccessFile
      4. Resource Paths
    3. The NIO File API
      1. FileSystem and Path
      2. NIO File Operations
      3. Directory Operations
      4. Watching Paths
    4. Serialization
      1. Initialization with readObject()
      2. SerialVersionUID
    5. Data Compression
      1. Archives and Compressed Data
      2. Decompressing Data
      3. Zip Archive As a Filesystem
    6. The NIO Package
      1. Asynchronous I/O
      2. Performance
      3. Mapped and Locked Files
      4. Channels
      5. Buffers
      6. Character Encoders and Decoders
      7. FileChannel
      8. Scalable I/O with NIO
  15. 13. Network Programming
    1. Sockets
      1. Clients and Servers
      2. author="pat” timestamp="20120926T110720-0500” comment="one of those sections I hate to get rid of but is less relevant in terms of the example... should probably find a more modern example...”The DateAtHost Client
      3. The TinyHttpd Server
      4. Socket Options
      5. Proxies and Firewalls
    2. Datagram Sockets
      1. author="pat” timestamp="20120926T141346-0500” comment="I actually rewrote this as a standalone client but then decided to leave it as an applet”The HeartBeat Applet
      2. InetAddress
    3. Simple Serialized Object Protocols
      1. A Simple Object-Based Server
    4. Remote Method Invocation
      1. Real-World Usage
      2. Remote and Nonremote Objects
      3. An RMI Example
      4. RMI and CORBA
    5. Scalable I/O with NIO
      1. Selectable Channels
      2. Using Select
      3. LargerHttpd
      4. Nonblocking Client-Side Operations
  16. 14. Programming for the Web
    1. Uniform Resource Locators (URLs)
    2. The URL Class
      1. Stream Data
      2. Getting the Content as an Object
      3. Managing Connections
      4. Handlers in Practice
      5. Useful Handler Frameworks
    3. Talking to Web Applications
      1. Using the GET Method
      2. Using the POST Method
      3. The HttpURLConnection
      4. SSL and Secure Web Communications
      5. URLs, URNs, and URIs
    4. Web Services
      1. XML-RPC
      2. WSDL
      3. The Tools
      4. The Weather Service Client
  17. 15. Web Applications and Web Services
    1. Web Application Technologies
      1. Page-Oriented Versus “Single Page” Applications
      2. JSPs
      3. XML and XSL
      4. Web Application Frameworks
      5. Google Web Toolkit
      6. HTML5, AJAX, and More...
    2. Java Web Applications
      1. The Servlet Lifecycle
      2. Servlets
      3. The HelloClient Servlet
      4. The Servlet Response
      5. Servlet Parameters
      6. The ShowParameters Servlet
      7. User Session Management
      8. The ShowSession Servlet
      9. The ShoppingCart Servlet
      10. Cookies
      11. The ServletContext API
      12. Asynchronous Servlets
    3. WAR Files and Deployment
      1. Configuration with web.xml and Annotations
      2. URL Pattern Mappings
      3. Deploying HelloClient
      4. Error and Index Pages
      5. Security and Authentication
      6. Protecting Resources with Roles
      7. Secure Data Transport
      8. Authenticating Users
      9. Procedural Authorization
    4. Servlet Filters
      1. A Simple Filter
      2. A Test Servlet
      3. Declaring and Mapping Filters
      4. Filtering the Servlet Request
      5. Filtering the Servlet Response
    5. Building WAR Files with Ant
      1. A Development-Oriented Directory Layout
      2. Deploying and Redeploying WARs with Ant
    6. Implementing Web Services
      1. Defining the Service
      2. Our Echo Service
      3. Using the Service
      4. Data Types
    7. Conclusion
  18. 16. Swing
    1. Components
      1. Peers and Look-and-Feel
      2. The MVC Framework
      3. Painting
      4. Enabling and Disabling Components
      5. Focus, Please
      6. Other Component Methods
      7. Layout Managers
      8. Insets
      9. Z-Ordering (Stacking Components)
      10. The revalidate() and doLayout() Methods
      11. Managing Components
      12. Listening for Components
      13. Windows, Frames and Splash Screens
      14. Other Methods for Controlling Frames
      15. Content Panes
      16. Desktop Integration
    2. Events
      1. Event Receivers and Listener Interfaces
      2. Event Sources
      3. Event Delivery
      4. Event Types
      5. The java.awt.event.InputEvent Class
      6. Mouse and Key Modifiers on InputEvents
      7. Focus Events
    3. Event Summary
      1. Adapter Classes
      2. Dummy Adapters
    4. The AWT Robot!
    5. Multithreading in Swing
  19. 17. Using Swing Components
    1. Buttons and Labels
      1. HTML Text in Buttons and Labels
    2. Checkboxes and Radio Buttons
    3. Lists and Combo Boxes
    4. The Spinner
    5. Borders
    6. Menus
    7. Pop-Up Menus
      1. Component-Managed Pop Ups
    8. The JScrollPane Class
    9. The JSplitPane Class
    10. The JTabbedPane Class
    11. Scrollbars and Sliders
    12. Dialogs
      1. File Selection Dialog
      2. The Color Chooser
  20. 18. More Swing Components
    1. Text Components
      1. The TextEntryBox Application
      2. Formatted Text
      3. Filtering Input
      4. Validating Data
      5. Say the Magic Word
      6. Sharing a Data Model
      7. HTML and RTF for Free
      8. Managing Text Yourself
    2. Focus Navigation
      1. Trees
      2. Nodes and Models
      3. Save a Tree
      4. Tree Events
      5. A Complete Example
    3. Tables
      1. A First Stab: Freeloading
      2. Round Two: Creating a Table Model
      3. Round Three: A Simple Spreadsheet
      4. Sorting and Filtering
      5. Printing JTables
    4. Desktops
    5. Pluggable Look-and-Feel
    6. Creating Custom Components
      1. Generating Events
      2. A Dial Component
      3. Model and View Separation
  21. 19. Layout Managers
    1. FlowLayout
    2. GridLayout
    3. BorderLayout
    4. BoxLayout
    5. CardLayout
    6. GridBagLayout
      1. The GridBagConstraints Class
      2. Grid Coordinates
      3. The fill Constraint
      4. Spanning Rows and Columns
      5. Weighting
      6. Anchoring
      7. Padding and Insets
      8. Relative Positioning
      9. Composite Layouts
    7. Other Layout Managers
    8. Absolute Positioning
  22. 20. Drawing with the 2D API
    1. The Big Picture
    2. The Rendering Pipeline
    3. A Quick Tour of Java 2D
      1. Filling Shapes
      2. Drawing Shape Outlines
      3. Convenience Methods
      4. Drawing Text
      5. Drawing Images
      6. The Whole Iguana
    4. Filling Shapes
      1. Solid Colors
      2. Color Gradients
      3. Textures
      4. Desktop Colors
    5. Stroking Shape Outlines
    6. Using Fonts
      1. Font Metrics
    7. Displaying Images
      1. The Image Class
      2. Image Observers
      3. Scaling and Size
    8. Drawing Techniques
      1. Double Buffering
      2. Limiting Drawing with Clipping
      3. Offscreen Drawing
    9. Printing
  23. 21. Working with Images and Other Media
    1. Loading Images
      1. ImageObserver
      2. MediaTracker
      3. ImageIcon
      4. ImageIO
    2. Producing Image Data
      1. Drawing Animations
      2. BufferedImage Anatomy
      3. Color Models
      4. Creating an Image
      5. Updating a BufferedImage
    3. Filtering Image Data
      1. How ImageProcessor Works
      2. Converting an Image to a BufferedImage
      3. Using the RescaleOp Class
      4. Using the AffineTransformOp Class
    4. Saving Image Data
    5. Simple Audio
    6. Java Media Framework
  24. 22. JavaBeans
    1. What’s a Bean?
      1. What Constitutes a Bean?
    2. The NetBeans IDE
      1. Installing and Running NetBeans
    3. Properties and Customizers
    4. Event Hookups and Adapters
      1. Taming the Juggler
      2. Molecular Motion
    5. Binding Properties
      1. Constraining Properties
    6. Building Beans
      1. The Dial Bean
      2. Design Patterns for Properties
    7. Limitations of Visual Design
    8. Serialization Versus Code Generation
    9. Customizing with BeanInfo
      1. Getting Properties Information
    10. Handcoding with Beans
      1. Bean Instantiation and Type Management
      2. Working with Serialized Beans
      3. Runtime Event Hookups with Reflection
    11. BeanContext and BeanContextServices
    12. The Java Activation Framework
    13. Enterprise JavaBeans and POJO-Based Enterprise Frameworks
  25. 23. Applets
    1. The Politics of Browser-Based Applications
    2. Applet Support and the Java Plug-in
    3. The JApplet Class
      1. Applet Lifecycle
      2. The Applet Security Sandbox
      3. Getting Applet Resources
      4. The <applet> Tag
      5. Attributes
      6. Parameters
      7. ¿Habla Applet?
      8. The Complete <applet> Tag
      9. Loading Class Files
      10. Packages
      11. appletviewer
    4. Java Web Start
    5. Conclusion
  26. 24. XML
    1. The Butler Did It
    2. A Bit of Background
      1. Text Versus Binary
      2. A Universal Parser
      3. The State of XML
      4. The XML APIs
      5. XML and Web Browsers
    3. XML Basics
      1. Attributes
      2. XML Documents
      3. Encoding
      4. Namespaces
      5. Validation
      6. HTML to XHTML
    4. SAX
      1. The SAX API
      2. Building a Model Using SAX
      3. XMLEncoder/Decoder
    5. DOM
      1. The DOM API
      2. Test-Driving DOM
      3. Generating XML with DOM
      4. JDOM
    6. XPath
      1. Nodes
      2. Predicates
      3. Functions
      4. The XPath API
      5. XMLGrep
    7. XInclude
      1. Enabling XInclude
    8. Validating Documents
      1. Using Document Validation
      2. DTDs
      3. XML Schema
      4. The Validation API
    9. JAXB Code Binding and Generation
      1. Annotating Our Model
      2. Generating a Java Model from an XML Schema
      3. Generating an XML Schema from a Java Model
    10. Transforming Documents with XSL/XSLT
      1. XSL Basics
      2. Transforming the Zoo Inventory
      3. XSLTransform
      4. XSL in the Browser
    11. Web Services
    12. The End of the Book
  27. A. The Eclipse IDE
    1. The IDE Wars
    2. Getting Started with Eclipse
      1. Importing the Learning Java Examples
    3. Using Eclipse
      1. Getting at the Source
      2. The Lay of the Land
      3. Running the Examples
      4. Building the Ant-Based Examples
      5. Loner Examples
    4. Eclipse Features
      1. Coding Shortcuts
      2. Autocorrection
      3. Refactoring
      4. Diffing Files
      5. Organizing Imports
      6. Formatting Source Code
    5. Conclusion
  28. B. BeanShell: Java Scripting
    1. Running BeanShell
    2. Java Statements and Expressions
      1. Imports
    3. BeanShell Commands
    4. Scripted Methods and Objects
      1. Scripting Interfaces and Adapters
    5. Changing the Classpath
    6. Learning More . . .
  29. Glossary
  30. Index
  31. About the Authors
  32. Colophon
  33. Copyright
O'Reilly logo

XPath

XPath is an expression language for addressing parts of an XML document. You can think of XPath expressions as sort of like regular expressions for XML. They let you pull out parts of an XML document based on patterns. In the case of XPath, the patterns are more concerned with structural information than with character content and the values returned may be either simple text or “live” DOM nodes. With XPath, we can query an XML document for all of the elements with a certain name or in a certain parent-child relationship. We can also apply fairly sophisticated tests or predicates to the nodes, which allows us to construct complex queries such as this one: give me all of the Animals with a Weight greater than the number 400 and a Temperament of irritable whose animalClass attribute is mammal.

The full XPath specification has many features and includes both a compact and more verbose syntax. We won’t try to cover it all here, but the basics are easy and it’s important to know them because XPath expressions are at the core of XSL transformations and other APIs that refer to parts of XML documents. The full specification does not make great bedtime reading, but can be found at http://www.w3.org/TR/xpath.

Nodes

An XPath expression addresses a Node in an XML document tree. The node may be an element (possibly with children) like <animal>...</animal> or it may be a lower-level document node representing an attribute (e.g., animalClass="mammal"), a CDATA block, or even a comment. All of the structure of an XML document is accessible through the XPath syntax. Once we’ve addressed the node, we can either reduce the content to a text string (as we might with a simple text content element like name) or we can access it as a proper DOM tree to further read or manipulate it.

Table 24-2 shows the most basic node-related syntax.

Table 24-2. Basic node-related syntax

Syntax

Example

Description

/Name

/inventory/animal

All animal nodes under /inventory.

//Name

//animal

All animal nodes anywhere in document. A foodRecipe/animal would also match.

Name/*

/inventory/*

All child nodes of inventory (animals and any other elements directly under inventory).

@Name

//animal/@animalClass

All animalClass attributes of animals.

.

/inventory/animal/.

The current node (all animals).

..

/inventory/animal/..

The parent node (inventory).

Nodes are addressed with a slash-separated path based on name. For example, /Inventory/Animal refers to the set of all Animal nodes under the Inventory node. If we want to list the names of all Animals, we would use /Inventory/Animal/Name. The // syntax matches a node anywhere in a document, at any level of nesting, so //Name would match the name elements of Animals, FoodRecipes, and possibly many other elements. We could be more specific, using //Animal/Name to match only Name elements whose parent is an Animal element. The at sign (@) matches attributes. This becomes much more useful with predicates, which we describe next. Finally, the familiar . and .. notation can be used to “move” relative to a node; read on to see how this is used.

Predicates

Predicates let us apply a test to a node. Nodes that pass the test are included in the result set or used to select other nodes (child or parent) relative to them. There are many types of tests available in XPath. Table 24-3 lists a few examples.

Table 24-3. Predicates

Syntax

Example

Description

[n]

/inventory/animal[1]

Select the nth element of a set. (Starts with 1 rather than 0.) For example, select the first animal in the inventory.

[@name=value]

//animal[@animalClass="mammal"]

Match nodes with the specified attribute value. For example, animals with the animalClass attribute "mammal".

[element=value]

//animal[name="Cocoa"]

Match nodes with a child node whose text value is specified. For example, match the animal with a name element containing the simple text "Cocoa".

=!=><

//animal[weight > 400]

Predicates may also test for inequality and numeric greater-/lesser-than value.

and, or

//animal[@animalClass= "mammal" or @class="reptile"]]

Predicates may use logical AND and OR to test. For example, animals whose animalClass is mammal or reptile.

Predicates can be compounded (AND’ed) using this syntax or simply by adding more predicates, like so:

        //animal[@animalClass="mammal"][weight > 400]

Here, we’ve asked for animals with a class attribute of "mammal" and a weight element containing a number greater than 400.

We can now also see the usefulness of the .. operator. Suppose we want to find all of the animals with a foodRecipe that uses Fruit as an ingredient:

        //animal/foodRecipe[ingredient="Fruit"]/..

The .. means that instead of returning the matching foodRecipe node itself, we return its parent—the animal element. The . (current node) operator is useful in other cases where we use XPath functions to manipulate values in more refined ways. We’ll say a few words about functions next.

Functions

The XPath specification includes not only the basic node traversal and predicate syntax we’ve shown, but also the ability to invoke more open-ended functions that operate on nodes and the node context. These XPath functions cover a wide range of duties and we’ll just give a couple of examples here. The functions fall into a few general categories.

Some functions select node types other than an element. For example, there is no special syntax for selecting an XML comment. Instead you invoke a special method called comment(), like this:

/inventory/comment()

This expression returns any XML comment nodes that are children of the inventory element. XPath also offers functions that duplicate all of the (compact) syntax we’ve discussed, including methods like child() and parent() (corresponding to . and ..).

Other functions look at the context of nodes—for example, last() and count().

/inventory/animal[last()]

This expression selects the last animal child element of inventory in the same way that [n] selects the nth.

//foodRecipe[count(ingredient)>2]

This expression matches all of the foodRecipe elements with more than two ingredients. (Cool, eh?)

Finally, there are many string-related functions. Some are useful for simple tests, but others are really useful only in the context of XSL, where they help out the language (in an awkward way) with basic formatting and string manipulation. For example, the contains() and starts-with() methods can be used to look at the text values inside XML documents:

//animal[starts-with(name,"S")]

This expression matches animals whose name starts with the character S (e.g., Song Fang). The contains() method, similarly, can be used to look for a substring in text.

The XPath API

Now that we’ve got a taste for the syntax, let’s look at how to use the API. The procedure is similar to that of the Java regular expression API for strings. We use a factory to create an XPath object. We can then either evaluate expressions with it or “compile” an expression down to an XPathExpression for better performance if we’re going to use it more than once.

XPath xpath = XPathFactory.newInstance().newXPath();
InputSource source = new InputSource( filename );
         
String result = xpath.evaluate( "//animal/name", source );
// Song Fang

Here we’ve used the simplest form of the evaluate() method, which returns only the first match and takes the value as a string. This method is useful for pulling simple text values from elements. However, if we want the full set of values (e.g., the names of all the animals matched by this expression), we need to return the results as a set of Node objects instead.

The return type of (the overloaded forms of) evaluate() is controlled by identifiers of the XPathConstants class. We can get the result as one of the following: STRING, BOOLEAN, NUMBER, NODE, or NODESET. The default is STRING, which strips out child element tags and returns just the text of the matching nodes. BOOLEAN and NUMBER are conveniences for getting primitive types. NODE and NODESET return org.w3c.dom.Node and NodeList objects, respectively. We need the NodeList to get all the values.

NodeList elements = (NodeList)xpath.evaluate(
    expression, inputSource, XPathConstants.NODESET );

Next, let’s put this together in a useful example.

XMLGrep

This simple example can be used as a command-line utility, such as grep, for testing XPath expressions against a file. It applies an XPath expression and then prints the resulting elements as XML text using the same technique we used in our PrintDOM example. Nodes that are not elements (e.g., attributes, comments, and so on) are simply printed with their toString() method, which normally serves well enough to identify them, but you can expand the example to your taste. Here it is:

    import org.w3c.dom.*;
    import org.xml.sax.InputSource;
    import javax.xml.xpath.*;
    import javax.xml.transform.*;
    import javax.xml.transform.dom.DOMSource;
    import javax.xml.transform.stream.StreamResult;
     
    public class XMLGrep {
     
        public static void printXML( Element element )
            throws TransformerException {
            
            Transformer transformer =
                TransformerFactory.newInstance().newTransformer();
            transformer.setOutputProperty( OutputKeys.OMIT_XML_DECLARATION,
                "yes" );
            Source source = new DOMSource( element );
            Result output = new StreamResult( System.out );
            transformer.transform( source, output );
            System.out.println();
        }
         
        public static void main( String [] args ) throws Exception {
            if ( args.length != 2 ) {
                System.out.println( "usage: PrintXPath expression file.xml" );
                System.exit(1);
            }
            String expression = args[0], filename = args[1];
             
            XPath xpath = XPathFactory.newInstance().newXPath();
            InputSource inputSource = new InputSource( filename );
             
            NodeList elements = (NodeList)xpath.evaluate(
            expression, inputSource, XPathConstants.NODESET );
             
            for( int i=0; i<elements.getLength(); i++ )
                if ( elements.item(i) instanceof Element ) {
                    printXML( (Element)elements.item(i) );
                } else
                    System.out.println( elements.item(i) );
        }
     
    }

There are again a lot of imports in this example. The transform code in our printXML() method is drawn from the PrintDOM example with one addition. We’ve set a property on the transformer to omit the standard XML declaration that would normally be output for us at the head of our document. Since we may print more than one (root) element, the output is not well formed XML anyway.

Run the example by passing an XPath expression and the name of an XML file as arguments:

% java XMLGrep "//animal[starts-with(name,'C')]" zooinventory.xml

This example really is useful for trying out XPath. Please give it a whirl. Mastering these expressions (and learning more) will give you great power over XML documents and, again, form the basis for learning about XSL transformations.

The best content for your career. Discover unlimited learning on demand for around $1/day.