You are previewing Learning Java, 4th Edition.

Learning Java, 4th Edition

Cover of Learning Java, 4th Edition by Daniel Leuck... Published by O'Reilly Media, Inc.
  1. Learning Java
  2. Preface
    1. Who Should Read This Book
    2. New Developments
      1. New in This Edition (Java 6 and 7)
    3. Using This Book
    4. Online Resources
    5. Conventions Used in This Book
    6. Using Code Examples
    7. Safari® Books Online
    8. How to Contact Us
    9. Acknowledgments
  3. 1. A Modern Language
    1. Enter Java
      1. Java’s Origins
      2. Growing Up
    2. A Virtual Machine
    3. Java Compared with Other Languages
    4. Safety of Design
      1. Simplify, Simplify, Simplify...
      2. Type Safety and Method Binding
      3. Incremental Development
      4. Dynamic Memory Management
      5. Error Handling
      6. Threads
      7. Scalability
    5. Safety of Implementation
      1. The Verifier
      2. Class Loaders
      3. Security Managers
    6. Application and User-Level Security
    7. A Java Road Map
      1. The Past: Java 1.0–Java 1.6
      2. The Present: Java 7
      3. The Future
      4. Availability
  4. 2. A First Application
    1. Java Tools and Environment
    2. Configuring Eclipse and Creating a Project
      1. Importing the Learning Java Examples
    3. HelloJava
      1. Classes
      2. The main() Method
      3. Classes and Objects
      4. Variables and Class Types
      5. HelloComponent
      6. Inheritance
      7. The JComponent Class
      8. Relationships and Finger Pointing
      9. Package and Imports
      10. The paintComponent() Method
    4. HelloJava2: The Sequel
      1. Instance Variables
      2. Constructors
      3. Events
      4. The repaint() Method
      5. Interfaces
    5. HelloJava3: The Button Strikes!
      1. Method Overloading
      2. Components
      3. Containers
      4. Layout
      5. Subclassing and Subtypes
      6. More Events and Interfaces
      7. Color Commentary
      8. Static Members
      9. Arrays
      10. Our Color Methods
    6. HelloJava4: Netscape’s Revenge
      1. Threads
      2. The Thread Class
      3. The Runnable Interface
      4. Starting the Thread
      5. Running Code in the Thread
      6. Exceptions
      7. Synchronization
  5. 3. Tools of the Trade
    1. JDK Environment
    2. The Java VM
    3. Running Java Applications
      1. System Properties
    4. The Classpath
      1. javap
    5. The Java Compiler
    6. JAR Files
      1. File Compression
      2. The jar Utility
      3. The pack200 Utility
    7. Policy Files
      1. The Default Security Manager
      2. The policytool Utility
      3. Using a Policy File with the Default Security Manager
  6. 4. The Java Language
    1. Text Encoding
    2. Comments
      1. Javadoc Comments
    3. Types
      1. Primitive Types
      2. Reference Types
      3. A Word About Strings
    4. Statements and Expressions
      1. Statements
      2. Expressions
    5. Exceptions
      1. Exceptions and Error Classes
      2. Exception Handling
      3. Bubbling Up
      4. Stack Traces
      5. Checked and Unchecked Exceptions
      6. Throwing Exceptions
      7. try Creep
      8. The finally Clause
      9. Try with Resources
      10. Performance Issues
    6. Assertions
      1. Enabling and Disabling Assertions
      2. Using Assertions
    7. Arrays
      1. Array Types
      2. Array Creation and Initialization
      3. Using Arrays
      4. Anonymous Arrays
      5. Multidimensional Arrays
      6. Inside Arrays
  7. 5. Objects in Java
    1. Classes
      1. Accessing Fields and Methods
      2. Static Members
    2. Methods
      1. Local Variables
      2. Shadowing
      3. Static Methods
      4. Initializing Local Variables
      5. Argument Passing and References
      6. Wrappers for Primitive Types
      7. Autoboxing and Unboxing of Primitives
      8. Variable-Length Argument Lists
      9. Method Overloading
    3. Object Creation
      1. Constructors
      2. Working with Overloaded Constructors
      3. Static and Nonstatic Initializer Blocks
    4. Object Destruction
      1. Garbage Collection
      2. Finalization
      3. Weak and Soft References
    5. Enumerations
      1. Enum Values
      2. Customizing Enumerations
  8. 6. Relationships Among Classes
    1. Subclassing and Inheritance
      1. Shadowed Variables
      2. Overriding Methods
      3. Special References: this and super
      4. Casting
      5. Using Superclass Constructors
      6. Full Disclosure: Constructors and Initialization
      7. Abstract Methods and Classes
    2. Interfaces
      1. Interfaces as Callbacks
      2. Interface Variables
      3. Subinterfaces
    3. Packages and Compilation Units
      1. Compilation Units
      2. Package Names
      3. Class Visibility
      4. Importing Classes
    4. Visibility of Variables and Methods
      1. Basic Access Modifiers
      2. Subclasses and Visibility
      3. Interfaces and Visibility
    5. Arrays and the Class Hierarchy
      1. ArrayStoreException
    6. Inner Classes
      1. Inner Classes as Adapters
      2. Inner Classes Within Methods
  9. 7. Working with Objects and Classes
    1. The Object Class
      1. Equality and Equivalence
      2. Hashcodes
      3. Cloning Objects
    2. The Class Class
    3. Reflection
      1. Modifiers and Security
      2. Accessing Fields
      3. Accessing Methods
      4. Accessing Constructors
      5. What About Arrays?
      6. Accessing Generic Type Information
      7. Accessing Annotation Data
      8. Dynamic Interface Adapters
      9. What Is Reflection Good For?
    4. Annotations
      1. Using Annotations
      2. Standard Annotations
      3. The apt Tool
  10. 8. Generics
    1. Containers: Building a Better Mousetrap
      1. Can Containers Be Fixed?
    2. Enter Generics
      1. Talking About Types
    3. “There Is No Spoon”
      1. Erasure
      2. Raw Types
    4. Parameterized Type Relationships
      1. Why Isn’t a List<Date> a List<Object>?
    5. Casts
    6. Writing Generic Classes
      1. The Type Variable
      2. Subclassing Generics
      3. Exceptions and Generics
      4. Parameter Type Limitations
    7. Bounds
      1. Erasure and Bounds (Working with Legacy Code)
    8. Wildcards
      1. A Supertype of All Instantiations
      2. Bounded Wildcards
      3. Thinking Outside the Container
      4. Lower Bounds
      5. Reading, Writing, and Arithmetic
      6. <?>, <Object>, and the Raw Type
      7. Wildcard Type Relationships
    9. Generic Methods
      1. Generic Methods Introduced
      2. Type Inference from Arguments
      3. Type Inference from Assignment Context
      4. Explicit Type Invocation
      5. Wildcard Capture
      6. Wildcard Types Versus Generic Methods
    10. Arrays of Parameterized Types
      1. Using Array Types
      2. What Good Are Arrays of Generic Types?
      3. Wildcards in Array Types
    11. Case Study: The Enum Class
    12. Case Study: The sort() Method
    13. Conclusion
  11. 9. Threads
    1. Introducing Threads
      1. The Thread Class and the Runnable Interface
      2. Controlling Threads
      3. Death of a Thread
    2. Threading an Applet
      1. Issues Lurking
    3. Synchronization
      1. Serializing Access to Methods
      2. Accessing class and instance Variables from Multiple Threads
      3. The wait() and notify() Methods
      4. Passing Messages
      5. ThreadLocal Objects
    4. Scheduling and Priority
      1. Thread State
      2. Time-Slicing
      3. Priorities
      4. Yielding
    5. Thread Groups
      1. Working with ThreadGroups
      2. Uncaught Exceptions
    6. Thread Performance
      1. The Cost of Synchronization
      2. Thread Resource Consumption
    7. Concurrency Utilities
      1. Executors
      2. Locks
      3. Synchronization Constructs
      4. Atomic Operations
    8. Conclusion
  12. 10. Working with Text
    1. Text-Related APIs
    2. Strings
      1. Constructing Strings
      2. Strings from Things
      3. Comparing Strings
      4. Searching
      5. Editing
      6. String Method Summary
      7. StringBuilder and StringBuffer
    3. Internationalization
      1. The java.util.Locale Class
      2. Resource Bundles
    4. Parsing and Formatting Text
      1. Parsing Primitive Numbers
      2. Tokenizing Text
    5. Printf-Style Formatting
      1. Formatter
      2. The Format String
      3. String Conversions
      4. Primitive and Numeric Conversions
      5. Flags
      6. Miscellaneous
    6. Formatting with the java.text Package
      1. MessageFormat
    7. Regular Expressions
      1. Regex Notation
      2. The java.util.regex API
  13. 11. Core Utilities
    1. Math Utilities
      1. The java.lang.Math Class
      2. Big/Precise Numbers
      3. Floating-Point Components
      4. Random Numbers
    2. Dates and Times
      1. Working with Calendars
      2. Time Zones
      3. Parsing and Formatting with DateFormat
      4. Printf-Style Date and Time Formatting
    3. Timers
    4. Collections
      1. The Collection Interface
      2. Iterator
      3. Collection Types
      4. The Map Interface
      5. Collection Implementations
      6. Hash Codes and Key Values
      7. Synchronized and Unsynchronized Collections
      8. Read-Only and Read-Mostly Collections
      9. WeakHashMap
      10. EnumSet and EnumMap
      11. Sorting Collections
      12. A Thrilling Example
    5. Properties
      1. Loading and Storing
      2. System Properties
    6. The Preferences API
      1. Preferences for Classes
      2. Preferences Storage
      3. Change Notification
    7. The Logging API
      1. Overview
      2. Logging Levels
      3. A Simple Example
      4. Logging Setup Properties
      5. The Logger
      6. Performance
    8. Observers and Observables
  14. 12. Input/Output Facilities
    1. Streams
      1. Basic I/O
      2. Character Streams
      3. Stream Wrappers
      4. Pipes
      5. Streams from Strings and Back
      6. Implementing a Filter Stream
    2. File I/O
      1. The java.io.File Class
      2. File Streams
      3. RandomAccessFile
      4. Resource Paths
    3. The NIO File API
      1. FileSystem and Path
      2. NIO File Operations
      3. Directory Operations
      4. Watching Paths
    4. Serialization
      1. Initialization with readObject()
      2. SerialVersionUID
    5. Data Compression
      1. Archives and Compressed Data
      2. Decompressing Data
      3. Zip Archive As a Filesystem
    6. The NIO Package
      1. Asynchronous I/O
      2. Performance
      3. Mapped and Locked Files
      4. Channels
      5. Buffers
      6. Character Encoders and Decoders
      7. FileChannel
      8. Scalable I/O with NIO
  15. 13. Network Programming
    1. Sockets
      1. Clients and Servers
      2. author="pat” timestamp="20120926T110720-0500” comment="one of those sections I hate to get rid of but is less relevant in terms of the example... should probably find a more modern example...”The DateAtHost Client
      3. The TinyHttpd Server
      4. Socket Options
      5. Proxies and Firewalls
    2. Datagram Sockets
      1. author="pat” timestamp="20120926T141346-0500” comment="I actually rewrote this as a standalone client but then decided to leave it as an applet”The HeartBeat Applet
      2. InetAddress
    3. Simple Serialized Object Protocols
      1. A Simple Object-Based Server
    4. Remote Method Invocation
      1. Real-World Usage
      2. Remote and Nonremote Objects
      3. An RMI Example
      4. RMI and CORBA
    5. Scalable I/O with NIO
      1. Selectable Channels
      2. Using Select
      3. LargerHttpd
      4. Nonblocking Client-Side Operations
  16. 14. Programming for the Web
    1. Uniform Resource Locators (URLs)
    2. The URL Class
      1. Stream Data
      2. Getting the Content as an Object
      3. Managing Connections
      4. Handlers in Practice
      5. Useful Handler Frameworks
    3. Talking to Web Applications
      1. Using the GET Method
      2. Using the POST Method
      3. The HttpURLConnection
      4. SSL and Secure Web Communications
      5. URLs, URNs, and URIs
    4. Web Services
      1. XML-RPC
      2. WSDL
      3. The Tools
      4. The Weather Service Client
  17. 15. Web Applications and Web Services
    1. Web Application Technologies
      1. Page-Oriented Versus “Single Page” Applications
      2. JSPs
      3. XML and XSL
      4. Web Application Frameworks
      5. Google Web Toolkit
      6. HTML5, AJAX, and More...
    2. Java Web Applications
      1. The Servlet Lifecycle
      2. Servlets
      3. The HelloClient Servlet
      4. The Servlet Response
      5. Servlet Parameters
      6. The ShowParameters Servlet
      7. User Session Management
      8. The ShowSession Servlet
      9. The ShoppingCart Servlet
      10. Cookies
      11. The ServletContext API
      12. Asynchronous Servlets
    3. WAR Files and Deployment
      1. Configuration with web.xml and Annotations
      2. URL Pattern Mappings
      3. Deploying HelloClient
      4. Error and Index Pages
      5. Security and Authentication
      6. Protecting Resources with Roles
      7. Secure Data Transport
      8. Authenticating Users
      9. Procedural Authorization
    4. Servlet Filters
      1. A Simple Filter
      2. A Test Servlet
      3. Declaring and Mapping Filters
      4. Filtering the Servlet Request
      5. Filtering the Servlet Response
    5. Building WAR Files with Ant
      1. A Development-Oriented Directory Layout
      2. Deploying and Redeploying WARs with Ant
    6. Implementing Web Services
      1. Defining the Service
      2. Our Echo Service
      3. Using the Service
      4. Data Types
    7. Conclusion
  18. 16. Swing
    1. Components
      1. Peers and Look-and-Feel
      2. The MVC Framework
      3. Painting
      4. Enabling and Disabling Components
      5. Focus, Please
      6. Other Component Methods
      7. Layout Managers
      8. Insets
      9. Z-Ordering (Stacking Components)
      10. The revalidate() and doLayout() Methods
      11. Managing Components
      12. Listening for Components
      13. Windows, Frames and Splash Screens
      14. Other Methods for Controlling Frames
      15. Content Panes
      16. Desktop Integration
    2. Events
      1. Event Receivers and Listener Interfaces
      2. Event Sources
      3. Event Delivery
      4. Event Types
      5. The java.awt.event.InputEvent Class
      6. Mouse and Key Modifiers on InputEvents
      7. Focus Events
    3. Event Summary
      1. Adapter Classes
      2. Dummy Adapters
    4. The AWT Robot!
    5. Multithreading in Swing
  19. 17. Using Swing Components
    1. Buttons and Labels
      1. HTML Text in Buttons and Labels
    2. Checkboxes and Radio Buttons
    3. Lists and Combo Boxes
    4. The Spinner
    5. Borders
    6. Menus
    7. Pop-Up Menus
      1. Component-Managed Pop Ups
    8. The JScrollPane Class
    9. The JSplitPane Class
    10. The JTabbedPane Class
    11. Scrollbars and Sliders
    12. Dialogs
      1. File Selection Dialog
      2. The Color Chooser
  20. 18. More Swing Components
    1. Text Components
      1. The TextEntryBox Application
      2. Formatted Text
      3. Filtering Input
      4. Validating Data
      5. Say the Magic Word
      6. Sharing a Data Model
      7. HTML and RTF for Free
      8. Managing Text Yourself
    2. Focus Navigation
      1. Trees
      2. Nodes and Models
      3. Save a Tree
      4. Tree Events
      5. A Complete Example
    3. Tables
      1. A First Stab: Freeloading
      2. Round Two: Creating a Table Model
      3. Round Three: A Simple Spreadsheet
      4. Sorting and Filtering
      5. Printing JTables
    4. Desktops
    5. Pluggable Look-and-Feel
    6. Creating Custom Components
      1. Generating Events
      2. A Dial Component
      3. Model and View Separation
  21. 19. Layout Managers
    1. FlowLayout
    2. GridLayout
    3. BorderLayout
    4. BoxLayout
    5. CardLayout
    6. GridBagLayout
      1. The GridBagConstraints Class
      2. Grid Coordinates
      3. The fill Constraint
      4. Spanning Rows and Columns
      5. Weighting
      6. Anchoring
      7. Padding and Insets
      8. Relative Positioning
      9. Composite Layouts
    7. Other Layout Managers
    8. Absolute Positioning
  22. 20. Drawing with the 2D API
    1. The Big Picture
    2. The Rendering Pipeline
    3. A Quick Tour of Java 2D
      1. Filling Shapes
      2. Drawing Shape Outlines
      3. Convenience Methods
      4. Drawing Text
      5. Drawing Images
      6. The Whole Iguana
    4. Filling Shapes
      1. Solid Colors
      2. Color Gradients
      3. Textures
      4. Desktop Colors
    5. Stroking Shape Outlines
    6. Using Fonts
      1. Font Metrics
    7. Displaying Images
      1. The Image Class
      2. Image Observers
      3. Scaling and Size
    8. Drawing Techniques
      1. Double Buffering
      2. Limiting Drawing with Clipping
      3. Offscreen Drawing
    9. Printing
  23. 21. Working with Images and Other Media
    1. Loading Images
      1. ImageObserver
      2. MediaTracker
      3. ImageIcon
      4. ImageIO
    2. Producing Image Data
      1. Drawing Animations
      2. BufferedImage Anatomy
      3. Color Models
      4. Creating an Image
      5. Updating a BufferedImage
    3. Filtering Image Data
      1. How ImageProcessor Works
      2. Converting an Image to a BufferedImage
      3. Using the RescaleOp Class
      4. Using the AffineTransformOp Class
    4. Saving Image Data
    5. Simple Audio
    6. Java Media Framework
  24. 22. JavaBeans
    1. What’s a Bean?
      1. What Constitutes a Bean?
    2. The NetBeans IDE
      1. Installing and Running NetBeans
    3. Properties and Customizers
    4. Event Hookups and Adapters
      1. Taming the Juggler
      2. Molecular Motion
    5. Binding Properties
      1. Constraining Properties
    6. Building Beans
      1. The Dial Bean
      2. Design Patterns for Properties
    7. Limitations of Visual Design
    8. Serialization Versus Code Generation
    9. Customizing with BeanInfo
      1. Getting Properties Information
    10. Handcoding with Beans
      1. Bean Instantiation and Type Management
      2. Working with Serialized Beans
      3. Runtime Event Hookups with Reflection
    11. BeanContext and BeanContextServices
    12. The Java Activation Framework
    13. Enterprise JavaBeans and POJO-Based Enterprise Frameworks
  25. 23. Applets
    1. The Politics of Browser-Based Applications
    2. Applet Support and the Java Plug-in
    3. The JApplet Class
      1. Applet Lifecycle
      2. The Applet Security Sandbox
      3. Getting Applet Resources
      4. The <applet> Tag
      5. Attributes
      6. Parameters
      7. ¿Habla Applet?
      8. The Complete <applet> Tag
      9. Loading Class Files
      10. Packages
      11. appletviewer
    4. Java Web Start
    5. Conclusion
  26. 24. XML
    1. The Butler Did It
    2. A Bit of Background
      1. Text Versus Binary
      2. A Universal Parser
      3. The State of XML
      4. The XML APIs
      5. XML and Web Browsers
    3. XML Basics
      1. Attributes
      2. XML Documents
      3. Encoding
      4. Namespaces
      5. Validation
      6. HTML to XHTML
    4. SAX
      1. The SAX API
      2. Building a Model Using SAX
      3. XMLEncoder/Decoder
    5. DOM
      1. The DOM API
      2. Test-Driving DOM
      3. Generating XML with DOM
      4. JDOM
    6. XPath
      1. Nodes
      2. Predicates
      3. Functions
      4. The XPath API
      5. XMLGrep
    7. XInclude
      1. Enabling XInclude
    8. Validating Documents
      1. Using Document Validation
      2. DTDs
      3. XML Schema
      4. The Validation API
    9. JAXB Code Binding and Generation
      1. Annotating Our Model
      2. Generating a Java Model from an XML Schema
      3. Generating an XML Schema from a Java Model
    10. Transforming Documents with XSL/XSLT
      1. XSL Basics
      2. Transforming the Zoo Inventory
      3. XSLTransform
      4. XSL in the Browser
    11. Web Services
    12. The End of the Book
  27. A. The Eclipse IDE
    1. The IDE Wars
    2. Getting Started with Eclipse
      1. Importing the Learning Java Examples
    3. Using Eclipse
      1. Getting at the Source
      2. The Lay of the Land
      3. Running the Examples
      4. Building the Ant-Based Examples
      5. Loner Examples
    4. Eclipse Features
      1. Coding Shortcuts
      2. Autocorrection
      3. Refactoring
      4. Diffing Files
      5. Organizing Imports
      6. Formatting Source Code
    5. Conclusion
  28. B. BeanShell: Java Scripting
    1. Running BeanShell
    2. Java Statements and Expressions
      1. Imports
    3. BeanShell Commands
    4. Scripted Methods and Objects
      1. Scripting Interfaces and Adapters
    5. Changing the Classpath
    6. Learning More . . .
  29. Glossary
  30. Index
  31. About the Authors
  32. Colophon
  33. Copyright
O'Reilly logo

Creating Custom Components

In this chapter and the previous one, we’ve worked with different user interface objects. We’ve used Swing’s impressive repertoire of components as building blocks and extended their functionality, but we haven’t actually created any new components. In this section, we create an entirely new component from scratch, a dial.

Until now, our examples have been fairly self-contained; they generally know everything about what to do and don’t rely on additional parts to do processing. Our menu example created a DinnerFrame class that had a menu of dinner options, but it included all the processing needed to handle the user’s selections. If we wanted to process the selections differently, we’d have to modify the class. A true component separates the detection of user input from the handling of those choices. It lets the user take some action and then informs other interested parties by emitting events.

Generating Events

Because we want our new classes to be components, they should communicate the way components communicate: by generating event objects and sending those events to listeners. So far, we’ve written a lot of code that listened for events but haven’t seen an example that generated its own custom events.

Generating events sounds like it might be difficult, but it isn’t. You can either create new kinds of events by subclassing java.util.EventObject, or use one of the standard event types. In either case, you just need to allow registration of listeners for your events and provide a means to deliver events to those listeners. Swing’s JComponent class provides a protected member variable called listenerList, which you can use to keep track of event listeners. It’s an instance of EventListenerList; basically it acts like the maître d’ at a restaurant, keeping track of all event listeners, sorted by type.

Often, you won’t need to worry about creating a custom event type. JComponent has methods that support firing of generic PropertyChangeEvents whenever one of a component’s properties changes. The example we’ll look at next uses this infrastructure to fire PropertyChangeEvents whenever a value changes.

A Dial Component

The standard Swing classes don’t have a component that’s similar to an old-fashioned dial—for example, the volume control on your radio. (The JSlider fills this role, of course.) In this section, we implement a Dial class. The dial has a value that can be adjusted by clicking and dragging to “twist” the dial (see Figure 18-11). As the value of the dial changes, DialEvents are fired off by the component. The dial can be used just like any other Java component. We even have a custom DialListener interface that matches the DialEvent class.

The Dial component

Figure 18-11. The Dial component

Here’s the Dial code:

    //file: Dial.java
    import java.awt.*;
    import java.awt.event.*;
    import java.util.*;
    import javax.swing.*;

    public class Dial extends JComponent {
      int minValue, nvalue, maxValue, radius;

      public Dial() { this(0, 100, 0); }

      public Dial(int minValue, int maxValue, int value) {
        setMinimum( minValue );
        setMaximum( maxValue );
        setValue( value );
        setForeground( Color.lightGray );

        addMouseListener(new MouseAdapter() {
          public void mousePressed(MouseEvent e) { spin(e); }
        });
        addMouseMotionListener(new MouseMotionAdapter() {
          public void mouseDragged(MouseEvent e) { spin(e); }
        });
      }

      protected void spin( MouseEvent e ) {
        int y = e.getY();
        int x = e.getX();
        double th = Math.atan((1.0 * y - radius) / (x - radius));
        int value=(int)(th / (2 * Math.PI) * (maxValue - minValue));
        if (x < radius)
          setValue( value + (maxValue-minValue) / 2 + minValue);
        else if (y < radius)
          setValue( value + maxValue );
        else
          setValue( value + minValue);
      }

      public void paintComponent(Graphics g) {
        Graphics2D g2 = (Graphics2D)g;
        int tick = 10;
        radius = Math.min( getSize().width,getSize().height )/2 - tick;
        g2.setPaint( getForeground().darker() );
        g2.drawLine( radius * 2 + tick / 2, radius,
           radius * 2 + tick, radius);
        g2.setStroke( new BasicStroke(2) );
        draw3DCircle( g2, 0, 0, radius, true );
        int knobRadius = radius / 7;
        double th = nvalue * (2 * Math.PI) / (maxValue - minValue);
        int x = (int)(Math.cos(th) * (radius - knobRadius * 3)),
        y = (int)(Math.sin(th) * (radius - knobRadius * 3));
        g2.setStroke(new BasicStroke(1));
        draw3DCircle(g2, x + radius - knobRadius,
           y + radius - knobRadius, knobRadius, false );
      }

      private void draw3DCircle(
          Graphics g, int x, int y, int radius, boolean raised)
      {
        Color foreground = getForeground();
        Color light = foreground.brighter();
        Color dark = foreground.darker();
        g.setColor(foreground);
        g.fillOval(x, y, radius * 2, radius * 2);
        g.setColor(raised ? light : dark);
        g.drawArc(x, y, radius * 2, radius * 2, 45, 180);
        g.setColor(raised ? dark : light);
        g.drawArc(x, y, radius * 2, radius * 2, 225, 180);
      }

      public Dimension getPreferredSize() {
        return new Dimension(100, 100);
      }

      public void setValue( int value ) {
        this.nvalue = value - minValue;
        repaint();
        fireEvent();
      }
      public int getValue()  { return nvalue+minValue; }
      public void setMinimum(int minValue)  { this.minValue = minValue; }
      public int getMinimum()  { return minValue; }
      public void setMaximum(int maxValue)  { this.maxValue = maxValue; }
      public int getMaximum()  { return maxValue; }

      public void addDialListener(DialListener listener) {
        listenerList.add( DialListener.class, listener );
      }
      public void removeDialListener(DialListener listener) {
        listenerList.remove( DialListener.class, listener );
      }

      void fireEvent() {
        Object[] listeners = listenerList.getListenerList();
        for ( int i = 0; i < listeners.length; i += 2 )
          if ( listeners[i] == DialListener.class )
            ((DialListener)listeners[i + 1]).dialAdjusted(
              new DialEvent(this, getValue()) );
      }

      public static void main(String[] args) {
        JFrame frame = new JFrame("Dial v1.0");
        final JLabel statusLabel = new JLabel("Welcome to Dial v1.0");
        final Dial dial = new Dial();
        frame.add(dial, BorderLayout.CENTER);
        frame.add(statusLabel, BorderLayout.SOUTH);

        dial.addDialListener(new DialListener() {
          public void dialAdjusted(DialEvent e) {
            statusLabel.setText("Value is " + e.getValue());
          }
        });

        frame.setDefaultCloseOperation( JFrame.EXIT_ON_CLOSE );
        frame.setSize( 150, 150 );
        frame.setVisible( true );
      }
    }

Here’s DialEvent, a simple subclass of java.util.EventObject:

    //file: DialEvent.java
    import java.awt.*;

    public class DialEvent extends java.util.EventObject {
        int value;

        DialEvent( Dial source, int value ) {
            super( source );
            this.value = value;
        }

        public int getValue() {
            return value;
        }
    }

Finally, here’s the code for DialListener:

    //file: DialListener.java
    public interface DialListener extends java.util.EventListener {
        void dialAdjusted( DialEvent e );
    }

Let’s start from the top of the Dial class. We’ll focus on the structure and leave you to figure out the trigonometry on your own.

Dial’s main() method demonstrates how to use the dial to build a user interface. It creates a Dial and adds it to a JFrame. Then main() registers a dial listener on the dial. Whenever a DialEvent is received, the value of the dial is examined and displayed in a JLabel at the bottom of the frame window.

The constructor for the Dial class stores the dial’s minimum, maximum, and current values; a default constructor provides a minimum of 0, a maximum of 100, and a current value of 0. The constructor sets the foreground color of the dial and registers listeners for mouse events. If the mouse is pressed or dragged, Dial’s spin() method is called to update the dial’s value. spin() performs some basic trigonometry to figure out what the new value of the dial should be.

paintComponent() and draw3DCircle() do a lot of trigonometry to figure out how to display the dial. draw3DCircle() is a private helper method that draws a circle that appears either raised or depressed; we use this to make the dial look three-dimensional.

The next group of methods provides ways to retrieve or change the dial’s current setting and the minimum and maximum values. The important thing to notice here is the pattern of get and set methods for all of the important values used by the Dial. We will talk more about this in Chapter 22. Also, notice that the setValue() method does two important things: it repaints the component to reflect the new value and fires the DialEvent signifying the change.

The final group of methods in the Dial class provides the plumbing necessary for our event firing. addDialListener() and removeDialListener() take care of maintaining the listener list. Using the listenerList member variable we inherited from JComponent makes this an easy task. The fireEvent() method retrieves the registered listeners for this component. It sends a DialEvent to any registered DialListeners.

Model and View Separation

The Dial example is overly simplified. All Swing components, as we’ve discussed, keep their data model and view separate. In the Dial component, we’ve combined these elements in a single class, which limits its reusability. To have Dial implement the MVC paradigm, we would have developed a dial data model and something called a UI-delegate that handled displaying the component and responding to user events. For a full treatment of this subject, see the JogShuttle example in O’Reilly’s Java Swing.

In Chapter 19, we’ll take what we know about components and containers and put them together using layout managers to create complex GUIs.

The best content for your career. Discover unlimited learning on demand for around $1/day.