O'Reilly logo

Virtual Private Networks, Second Edition by Paul Wolfe, Charlie Scott, Mike Erwin

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Chapter 4. Implementing Layer 2 Connections

This chapter will discuss some of the major tunneling protocols used by VPN vendors. These protocols are the Point-to-Point Tunneling Protocol (PPTP), Layer 2 Forwarding (L2F), and the Layer 2 Tunneling Protocol (L2TP).

Tunneling protocols essentially make square pegs fit into round holes. Imagine you have a round pipe and you want to send a cube through it. The cube is just going to get stuck, or isn’t going to fit at all. The way to get around this is to encapsulate the cube within a sphere, then send it through the pipe. In other words, you take something that your transport medium can’t work with and package it within something it can. All computer networking works this way, in one fashion or another.

All of these tunneling protocols operate by tunneling Layer 2 of the OSI Reference Model for communications protocols, also known as the Data Link Layer, over IP. It is at this layer that protocols such as PPP operate. As you may know, PPP is commonly used to transport IP and other protocols over serial and digital connections. Typically PPP connections are made between a client and a remote host, such as a remote access server. Likewise, PPTP, L2F, and L2TP are all used to tunnel PPP connections over the Internet so that they may be terminated on a remote host. In this case, the tunnel essentially acts in place of the line. Because they use existing PPP infrastructure, these protocols gain the advantages of the PPP protocol, including dynamic address assignment from a pool or from DHCP, user-based authentication, and compression.

The Point-to-Point Tunneling Protocol was jointly developed by engineers from Ascend Communications, U.S. Robotics, 3Com Corporation, Microsoft Corporation, and ECI Telematics to provide a virtual private network between remote access users and network servers. In this chapter, we will discuss the functionality of PPTP and how it might fit into certain virtual private network scenarios. In Chapter 5, we’ll take the knowledge we gain here and apply it to setting up a VPN using PPTP.

The companies that created PPTP banded together to form the PPTP Forum. At the same time that the PPTP Forum was formalizing their specification, Cisco was independently developing the Layer 2 Forwarding protocol. Working with the Internet Engineering Task Force, the PPTP Forum and Cisco banded together to create the Internet draft specification for the Level 2 Tunneling Protocol, a new core protocol that combines the best features of PPTP and L2F, while maintaining some backward compatibility. As of this writing, L2TP was on draft version 11 (due to expire in November 1998), but an RFC number was expected to be assigned soon.

Differences Between PPTP, L2F, and L2TP

Both PPTP and L2F allow you to use any authentication method you would normally use with PPP, including PAP and CHAP—essentially whatever authentication protocols both the client and server support. For encryption, PPTP uses the RC4 cipher with either 40-bit or 128-bit keys. L2F, on the other hand, supports 40-bit or 56-bit DES encryption with the 11.2 versions of Cisco’s IOS. IOS version 11.3(3)T and later supports IPSec, which can also be used to encrypt an L2F connection.

L2TP combines the best features of PPTP and L2F and allows for either client-initiated or remote access switch-initiated L2TP connections. You can use L2TP in any situation where you might use PPTP or L2F. It can still use the same authentication protocols as the others, including PAP, CHAP, and MS-CHAP. IPSec is the recommended encryption mechanism for L2TP. Although that L2TP was reputed to “replace” PPTP, Microsoft has chosen to continue providing PPTP in Windows NT 5.0 for those who do not wish to maintain the public key infrastructure required for IPSec.

PPTP is available on currently shipping versions of Windows NT Server 4.0 and Windows NT Workstation 4.0 as part of Remote Access Services (RAS)—NT’s dial- up networking software. Microsoft’s PPTP support for Windows 95 is included in their Dial-Up Networking Upgrade Version 1.3. Microsoft has also released LAN-to-LAN PPTP connections for Windows NT in their “Routing and Remote Access” software (codenamed “Stronghold”), as part of the Windows NT Option Pack. PPTP support is included in Windows 98. Microsoft Windows NT 5.0 will also support PPTP connections.

A Macintosh PPTP client is available from Network TeleSystems (http://www.nts.com). Called TunnelBuilder, it offers full PPTP support, including NT domain login and data encryption. Network TeleSystems (NTS) also has a version of TunnelBuilder for Windows 95, Windows 98, Windows for Workgroups, and Windows 3.1. Since Microsoft doesn’t plan on supporting PPTP on down-level versions of Windows, this allows users with legacy systems to run PPTP. The NTS Windows clients support L2TP. In addition, Linux is now capable of supporting PPTP.

There are also a number of hardware devices that support PPTP out of the box. These devices are known variously as remote access servers, remote hubs, terminal servers, and remote access switches. In this chapter, we will refer to them simply as remote access switches, because that term is prevalent in the industry and best describes what they do. There are a number of remote access switches that support PPTP, among them Ascend’s MAX line, the 3Com/U.S. Robotics Total Control line, and ECI Telematics’ Nevada. These are typical brands used in ISP points-of-presence and corporate networks to terminate modem and ISDN calls. PPTP is included as part of all of these products free of charge—no additional activation fees are required. There are also some hardware devices that act as PPTP servers, but do not operate as a standard remote access switch. Examples of these are the Bay Networks Extranet Switch and the NTS TunnelMaster.

L2F is supported by Cisco in their IOS software for their routers. Other vendors, such as Nortel and Shiva, also support L2F. L2TP is supported in Cisco IOS 11.3(5)AA and later. In addition, many other hardware devices support it. Microsoft will include L2TP support in Windows NT 5.0. Because PPTP, L2F, and L2TP operate similarly, we will concentrate on PPTP and L2TP.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required