You are previewing Thermodynamics.
O'Reilly logo
Thermodynamics

Book Description

Designed for undergraduate students of mechanical engineering, Thermodynamics offers a lucid treatment of the concepts dealt with in their core paper on thermodynamics. It is an easily readable and compact book that covers all topics that are relevant to a basic course on thermodynamics without any let up on academic rigor required for a thorough understanding of the subject.

Table of Contents

  1. Cover
  2. Title Page
  3. Brief Contents
  4. Contents
  5. About the Author
  6. Preface
  7. Nomenclature
  8. Part I – Fundamentals
    1. Chapter 1: Fundamental Concepts and Definitions
      1. 1.1 Introduction
      2. 1.2 Thermodynamic Analysis
        1. 1.2.1 Microscopic Analysis
        2. 1.2.2 Macroscopic Analysis
        3. 1.2.3 Macroscopic vs. Microscopic Points of View
      3. 1.3 Thermodynamic Systems
        1. 1.3.1 Closed System or Control Mass
        2. 1.3.2 Open System or Control Volume
        3. 1.3.3 Isolated System
        4. 1.3.4 Homogenous and Isotropic Systems
      4. 1.4 Definitions
        1. 1.4.1 Working Substance
        2. 1.4.2 Phase
        3. 1.4.3 Pure Substance
        4. 1.4.4 Triple Point
        5. 1.4.5 Quantity of Matter
        6. 1.4.6 Equation of State
        7. 1.4.7 Property
        8. 1.4.8 State
        9. 1.4.9 Path
        10. 1.4.10 Process
        11. 1.4.11 Cycle
        12. 1.4.12 Thermodynamic Equilibrium
        13. 1.4.13 Reversible and Irreversible Processes
      5. 1.5 Concept of a Continuum
        1. 1.5.1 Density and Specific Volume
      6. 1.6 Thermodynamic Variables
      7. 1.7 Pressure
      8. 1.8 Units and Dimensions
      9. 1.9 Closure
      10. 1.10 Molecular Interpretation of Pressure
      11. Review Questions
      12. Problems
    2. Chapter 2: Work and Heat
      1. 2.1 Introduction
      2. 2.2 Work
        1. 2.2.1 Mechanics Definition of Work
        2. 2.2.2 Thermodynamics Definition of Work
        3. 2.2.3 Units of Work
      3. 2.3 Types of Work
        1. 2.3.1 Reversible Boundary Displacement Work
        2. 2.3.2 Shaft Work or Paddle Wheel Work
        3. 2.3.3 Flow Work
      4. 2.4 Work Done in Some Reversible Processes
        1. 2.4.1 Constant Volume Process
        2. 2.4.2 Constant Pressure Process
        3. 2.4.3 Isothermal Process
        4. 2.4.4 Reversible Polytropic Process
        5. 2.4.5 Reversible Adiabatic Process
      5. 2.5 Free Expansion Process
      6. 2.6 Work of a Cycle
      7. 2.7 Work as a Path Function
      8. 2.8 Other Types of Work
        1. 2.8.1 Elastic Bar
        2. 2.8.2 Stretched Wire
        3. 2.8.3 Surface Film
        4. 2.8.4 Reversible Cell
        5. 2.8.5 Dielectric Polarization
        6. 2.8.6 Magnetization
        7. 2.8.7 Thermoelectric Generator
      9. 2.9 Heat
        1. 2.9.1 Modes of Heat Transfer
        2. 2.9.2 Specific Heat
        3. 2.9.3 Latent Heat
        4. 2.9.4 Heat as a Path Function
        5. 2.9.5 Units of Heat
      10. 2.10 Sign Convention for Work and Heat
      11. 2.11 Comparison Between Work and Heat
      12. 2.12 Closure
      13. 2.13 Molecular Basis of Work and Heat
      14. Review Questions
      15. Problems
  9. Part II – The Laws of Thermodynamics
    1. Chapter 3: Zeroth Law of Thermodynamics
      1. 3.1 Introduction
      2. 3.2 Zeroth Law of Thermodynamics
      3. 3.3 Temperature Scales
        1. 3.3.1 Fixed Points
        2. 3.3.2 The Ideal Gas Temperature Scale
        3. 3.3.3 The International Temperature Scale of 1990 (ITS-90)
      4. 3.4 Thermometers
        1. 3.4.1 Platinum Resistance Thermometers
        2. 3.4.2 Optical Pyrometers
        3. 3.4.3 Vapour Pressure Thermometers
        4. 3.4.4 Thermocouples
      5. 3.5 Closure
      6. 3.6 Mathematical Establishment of Temperature
      7. 3.7 Molecular Basis of Temperature
      8. Review Questions
      9. Problems
    2. Chapter 4: The First Law of Thermodynamics
      1. 4.1 Introduction
      2. 4.2 Joules Experiments and the First Law of Thermodynamics
      3. 4.3 Corollaries of First Law
        1. 4.3.1 Corollary 1
        2. 4.3.2 Corollary 2
        3. 4.3.3 Corollary 3
      4. 4.4 Sign Convention for Heat and Work
      5. 4.5 First Law Analysis of Closed Systems
        1. 4.5.1 Constant Volume Process
        2. 4.5.2 Constant Pressure Process
        3. 4.5.3 Constant Temperature Process
        4. 4.5.4 Reversible Adiabatic Process
        5. 4.5.5 Reversible Polytropic Process
        6. 4.5.6 Isenthalpic Process
        7. 4.5.7 Constant Internal Energy Process
      6. 4.6 Closure
      7. 4.7 Molecular Basis of Energy
      8. Review Questions
      9. Problems
    3. Chapter 5: First Law Analysis of Open Systems
      1. 5.1 Introduction
      2. 5.2 Continuity Equation in Steady Flow
      3. 5.3 The First Law of Thermodynamics for a Control Volume
        1. 5.3.1 The General Energy Equation
      4. 5.4 Steady Flow Energy Equation (SFEE)
        1. 5.4.1 Work Done in the Control Volume
      5. 5.5 Engineering Applications of Steady Flow Energy Equation
        1. 5.5.1 Throttling Process
        2. 5.5.2 Insulated Duct
        3. 5.5.3 Nozzle and Diffuser
        4. 5.5.4 Boiler
        5. 5.5.5 Condenser
        6. 5.5.6 Evaporator
        7. 5.5.7 Combustion Chamber
        8. 5.5.8 Turbine and Compressor
        9. 5.5.9 Compressor
      6. 5.6 Variable Flow Processes
        1. 5.6.1 Tank Filling
        2. 5.6.2 Work Done on the System
        3. 5.6.3 Control Volume Analysis
        4. 5.6.4 Tank Discharge
        5. 5.6.5 Control Mass Analysis
        6. 5.6.6 Work Done by the System
        7. 5.6.7 Control Volume Analysis
      7. 5.7 Closure
      8. Review Questions
      9. Problems
    4. Chapter 6: Second Law of Thermodynamics
      1. 6.1 Introduction
      2. 6.2 Heat Engines
        1. 6.2.1 Thermal Energy Reservoirs
        2. 6.2.2 Definition of a Heat Engine
        3. 6.2.3 Mechanical and Thermodynamic Cycles
        4. 6.2.4 Thermal Efficiency
      3. 6.3 Refrigerators and Heat Pumps
        1. 6.3.1 Refrigerator
        2. 6.3.2 Heat Pump
        3. 6.3.3 Relation Between COPhp and COPref
      4. 6.4 The Carnot Cycle
        1. 6.4.1 Carnot Refrigerator and Heat Pump
      5. 6.5 The Need for the Second Law of Thermodynamics
        1. 6.5.1 Limitations of the First Law
      6. 6.6 The Second Law of Thermodynamics
        1. 6.6.1 Equivalence of the Two Statements
      7. 6.7 Importance of the Second Law
      8. 6.8 Reversibility and Irreversibility
        1. 6.8.1 Internal and External Reversibility
        2. 6.8.2 Reversible Processes
        3. 6.8.3 Irreversible Processes
      9. 6.9 Perpetual Motion Machine of the Second Kind, PMM-2
      10. 6.10 Corollaries of Second Law
        1. 6.10.1 Corollary 1
        2. 6.10.2 Corollary 2
        3. 6.10.3 Corollary 3
        4. 6.10.4 Corollary 4
      11. 6.11 Absolute Fahrenheit and Centigrade Scales
      12. 6.12 Equivalence of the Ideal Gas and Absolute Thermodynamic Temperature Scales
      13. 6.13 Absolute Zero
      14. 6.14 Closure
      15. 6.15 Molecular Basis of Second Law
      16. Review Questions
      17. Problems
    5. Chapter 7: Entropy and the Third Law of Thermodynamics
      1. 7.1 Introduction
      2. 7.2 General Reversible Process
        1. 7.2.1 Proof that Two Reversible Adiabatics do not Intersect
        2. 7.2.2 Proof that Reversible Adiabatic Lines are Steeper Than Isothermal Lines
      3. 7.3 General Reversible Cycle
      4. 7.4 The Inequality of Clausius
      5. 7.5 Entropy as a Property
      6. 7.6 The Principle of Entropy Increase
      7. 7.7 Calculation of Entropy Change
      8. 7.8 Entropy Change of an Ideal Gas
        1. 7.8.1 Constant Volume Process
        2. 7.8.2 Constant Pressure Process
        3. 7.8.3 Isothermal Process
        4. 7.8.4 Reversible Adiabatic Process
      9. 7.9 Entropy Change in Open Systems
      10. 7.10 Entropy as a Coordinate
      11. 7.11 Introduction to the Third Law of Thermodynamics
        1. 7.11.1 Statements of the Third Law
        2. 7.11.2 Specific Heats at Absolute Zero
        3. 7.11.3 Coefficient of Volumetric Expansion at Absolute Zero
        4. 7.11.4 Entropy at Absolute Zero
        5. 7.11.5 Unattainability of Absolute Zero
        6. 7.11.6 Exceptions to the Third Law
      12. 7.12 Closure
      13. 7.13 Molecular Basis of Entropy
      14. Review Questions
      15. Problems
  10. Part III – Advanced Topics
    1. Chapter 8: Availability
      1. 8.1 Introduction
      2. 8.2 Available and Unavailable Energy
      3. 8.3 Thermodynamic Potential Functions
      4. 8.4 Maximum Work in a Closed System
      5. 8.5 Maximum Work in an Open System
      6. 8.6 Useful Work
      7. 8.7 Availability
        1. 8.7.1 Availability in a Closed System
        2. 8.7.2 Availability in an Open System
      8. 8.8 Irreversibility
      9. 8.9 Second Law Efficiency
      10. 8.10 Closure
      11. Review Questions
      12. Problems
    2. Chapter 9: Thermodynamic Property Relations
      1. 9.1 Introduction
      2. 9.2 T ds Equations
      3. 9.3 Maxwell’s Equations
        1. 9.3.1 Relations for u, h, g and a in Terms of p, v, T and s
      4. 9.4 Characteristic Functions
      5. 9.5 Specific Heat Relations
        1. 9.5.1 Other Relations for cp and cv
        2. 9.5.2 Proof that cp is Never be Less Than cv
        3. 9.5.3 Relation for the Ratio of Specific Heats
      6. 9.6 Joule–Thomson Coefficient
      7. 9.6.1 Relations for Joule–Thomson Coefficient
      8. 9.7 Relations for Internal Energy
      9. 9.7.1 Internal Energy Relations Based on First Law
      10. 9.7.2 Internal Energy Relations Based on Combined First and Second Law
      11. 9.8 Relations for Enthalpy
      12. 9.9 Relations for Entropy
      13. 9.10 Closure
      14. Review Questions
      15. Problems
    3. Chapter 10: Properties of Pure Substances
      1. 10.1 Introduction
      2. 10.2 Pure Substance
      3. 10.3 Phase Change Processes of Pure Substance
      4. 10.4 Property Diagrams
        1. 10.4.1 The T–v Diagram
        2. 10.4.2 The p–V Diagram
        3. 10.4.3 The p–T Diagram
      5. 10.5 Thermodynamic Surfaces p–V–T Surface
      6. 10.6 H–s or Mollier Diagram
      7. 10.7 Vapour Processes
        1. 10.7.1 Constant Pressure Process
        2. 10.7.2 Constant Volume Process
        3. 10.7.3 Constant Temperature Process
        4. 10.7.4 Isentropic Process
        5. 10.7.5 Reversible Polytropic Process
      8. 10.8 Clapeyron Equation
      9. 10.9 Table of Properties
      10. 10.10 Measurement of Steam Quality
        1. 10.10.1 Separating Calorimeter
        2. 10.10.2 Throttling Calorimeter
        3. 10.10.3 Separating and Throttling Calorimeter
      11. 10.11 Closure
      12. 10.12 Molecular Basis for Solids, Liquids and Gases
        1. 10.12.1 Matter
        2. 10.12.2 Molecular Energy
      13. Review Questions
      14. Problems
  11. Part IV – The Gaseous Phase
    1. Chapter 11: Ideal and Real Gases
      1. 11.1 Introduction
      2. 11.2 The Ideal Gas
        1. 11.2.1 Boyle’s Law
        2. 11.2.2 Charles’ Law or Gay-Lussac’s Law
      3. 11.3 Avogadro’s Law
      4. 11.4 Internal Energy and Enthalpy of Ideal Gas
      5. 11.5 Enthalpy of an Ideal Gas
      6. 11.6 Specific Heat of an Ideal Gas
      7. 11.7 Entropy of an Ideal Gas
      8. 11.8 Entropy Change in Free Expansion of an Ideal Gas
      9. 11.9 Isentropic Relation for an Ideal Gas
        1. 11.9.1 An Alternative Method
      10. 11.10 Real Gases
      11. 11.11 Real Gas Equations of State
      12. 11.12 Van der Waals Equation of State
      13. 11.13 Law of Corresponding States
      14. 11.14 Closure
      15. 11.15 Molecular Interpretation of the Ideal Gas Law
      16. Review Questions
      17. Problems
    2. Chapter 12: Non-reactive Gas Mixtures
      1. 12.1 Introduction
      2. 12.2 Analyses of Mixtures
        1. 12.2.1 Gravimetric Analysis or Mass Analysis
        2. 12.2.2 Molar Analysis
        3. 12.2.3 Volumetric Analysis
        4. 12.2.4 partial Pressure
      3. 12.3 Gibbs-Dalton Law
        1. 12.3.1 Mixture Pressure
        2. 12.3.2 Mixture Gas Constant
        3. 12.3.3 Equivalence ofpartial Pressure Ratio and Mole Fraction
        4. 12.3.4 Mixture Molar Mass
      4. 12.4 Amagat–Leduc Law
      5. 12.5 Specific Heat of Gaseous Mixtures
        1. 12.5.1 Specific Heat at Constant Volume
        2. 12.5.2 Specific Heat at Constant Pressure
      6. 12.6 Entropy of Gaseous Mixtures
      7. 12.7 Mixing of Ideal Gases
      8. 12.8 Mixtures of Real Gases
      9. 12.9 Closure
      10. Review Questions
      11. Problems
    3. Chapter 13: Psychrometrics
      1. 13.1 Introduction
      2. 13.2 Definitions
      3. 13.3 Psychrometers
      4. 13.4 Determination of Psychrometric Properties
        1. 13.4.1 Determination of Saturation Pressure of Water Vapour in Air
        2. 13.4.2 Determination of Dew Point Temperature
        3. 13.4.3 Determination of Enthalpy of an Air–Water Vapour Mixture
        4. 13.4.4 Determination of Entropy of Air–Water Vapour Mixtures
        5. 13.4.5 Determination of Wet Bulb Temperature, Specific Humidity, and Relative Humidity
      5. 13.5 Psychrometric Charts
      6. 13.6 Processes Involving Air–Water Vapour Mixtures
        1. 13.6.1 Sensible Heating
        2. 13.6.2 Sensible Cooling
        3. 13.6.3 Adiabatic Saturation
        4. 13.6.4 Cooling and Dehumidifying
        5. 13.6.5 Heating and Humidifying
        6. 13.6.6 Chemical Dehumidifying
        7. 13.6.7 Chemical Drying
        8. 13.6.8 Mixing Air
        9. 13.6.9 Fogged Air
        10. 13.6.10 Cooling Towers
      7. 13.7 Closure
      8. Review Questions
      9. Problems
    4. Chapter 14: Reactive Gas Mixtures—Combustion
      1. 14.1 Introduction
      2. 14.2 Fuels
      3. 14.3 Analysis of Fuels
      4. 14.4 Combustion Reactions
        1. 14.4.1 Combustion Mass Balance
        2. 14.4.2 Ideal Combustion
        3. 14.4.3 Incomplete Combustion
        4. 14.4.4 Oxygen Required for Combustion
        5. 14.4.5 Air–Fuel Ratio
        6. 14.4.6 Stoichiometric Reactions
        7. 14.4.7 Stoichiometric Air
        8. 14.4.8 Excess Air
        9. 14.4.9 Equivalence Ratio
        10. 14.4.10 Actual Combustion
        11. 14.4.11 Analysis of Products of Combustion
      5. 14.5 Combustion Energy Balance
        1. 14.5.1 First Law Analysis of Chemical Reactions
        2. 14.5.2 Internal Energy of Reaction
        3. 14.5.3 Enthalpy of Reaction
        4. 14.5.4 Enthalpy of Formation
        5. 14.5.5 Relation Between ΔU
      6. 14.6 Heating Value of Fuels
      7. 14.7 Energy Relations for Non-Isothermal Reactions
        1. 14.7.1 Isothermal Reaction at Standard Temperature
        2. 14.7.2 Isothermal Reaction at Temperature Different from Standard
        3. 14.7.3 Non-Isothermal Reaction
        4. 14.7.4 Adiabatic Reaction
      8. 14.8 Adiabatic Flame Temperature
      9. 14.9 Closure
      10. Review Questions
      11. Problems
  12. Part V – Thermodynamic Cycles
    1. Chapter 15: Vapour Power Cycles
      1. 15.1 Introduction
      2. 15.2 Carnot Vapour Power Cycle
      3. 15.3 Rankine Cycle
      4. 15.4 Rankine Cycle with Superheat
      5. 15.5 The Reheat Cycle
      6. 15.6 The Regenerative Cycle
      7. 15.7 Reheat–Regenerative Cycle
      8. 15.8 Binary Cycle
        1. 15.8.1 Thermal Efficiency of the Binary Cycle
      9. 15.9 Combined Cycle
      10. 15.10 Cogeneration
      11. 15.11 Deviations of Practical Cycles from Ideal Cycle
      12. 15.12 Second Law Analysis of Vapour Power Cycles
      13. 15.13 Closure
      14. Review Questions
      15. Problems
    2. Chapter 16: Reciprocating IC Engine Cycles
      1. 16.1 Introduction
      2. 16.2 Reciprocating IC Engines
      3. 16.3 Definitions
      4. 16.4 Air-standard Cycles
        1. 16.4.1 Carnot Cycle
        2. 16.4.2 The Otto Cycle
        3. 16.4.3 Diesel Cycle
        4. 16.4.4 Dual Cycle
        5. 16.4.5 Ericcson Cycle
        6. 16.4.6 Stirling Cycle
      5. 16.5 The Wankel Rotary Combustion Engine
      6. 16.6 Modern Developments in Reciprocating IC Engines
        1. 16.6.1 Multi-Point Fuel Injection for Petrol Engines
        2. 16.6.2 The Common Rail Direct Injection System
      7. 16.7 Closure
      8. Review Questions
      9. Problems
    3. Chapter 17: Gas Turbine Cycles
      1. 17.1 Introduction
      2. 17.2 Brayton Cycle
        1. 17.2.1 Open Cycle Analysis
        2. 17.2.2 Closed Cycle Analysis
        3. 17.2.3 Thermal Efficiency of the Brayton Cycle
        4. 17.2.4 Maximum Work from the Brayton Cycle
        5. 17.2.5 Back Work Ratio
      3. 17.3 Modifications to the Brayton Cycle
        1. 17.3.1 Brayton Cycle with Regeneration
        2. 17.3.2 Regenerator Effectiveness
        3. 17.3.3 Brayton Cycle with Intercooling
        4. 17.3.4 Brayton Cycle with Reheat
        5. 17.3.5 Brayton Cycle with Reheat and Intercooling
        6. 17.3.6 Brayton Cycle with Reheat, Regeneration and Intercooling
      4. 17.4 Deviations from the Ideal Cycle–Brayton Cycle with Real Compressor and Turbine
      5. 17.5 Ericsson Cycle for Gas Turbines
      6. 17.6 Compound Power Plants
      7. 17.7 Jet Engines
        1. 17.7.1 Ram-Jet
        2. 17.7.2 Pulse-Jet
        3. 17.7.3 Turbo-Jet
        4. 17.7.4 Turboprop
        5. 17.7.5 The Rocket Engine
      8. 17.8 Closure
      9. Review Questions
      10. Problems
    4. Chapter 18: Refrigeration Cycles
      1. 18.1 Introduction
      2. 18.2 Reversed Carnot Cycle
      3. 18.3 Vapour Compression Refrigeration
        1. 18.3.1 Analysis of the Ideal Vapour Compression Cycle
        2. 18.3.2 The Pressure–Enthalpy Diagram
      4. 18.4 Multistage Refrigeration
        1. 18.4.1 Multistage Expansion and Compression
        2. 18.4.2 Cascade Refrigeration System
        3. 18.4.3 Multistage Expansion and Evaporation
      5. 18.5 Absorption Refrigeration
        1. 18.5.1 Aqua Ammonia Absorption Refrigeration System
        2. 18.5.2 Analysis of the Absorption Refrigeration System
      6. 18.6 Air Cycle Refrigeration
        1. 18.6.1 Simple Air Cycle Refrigeration
        2. 18.6.2 Air Cycle Refrigeration for Aircraft
        3. 18.6.3 Boot Strap Air Cycle Refrigeration System
        4. 18.6.4 Air Cycle Refrigeration with Regeneration
      7. 18.7 Steam Jet Refrigeration
      8. 18.8 Vortex Tube Refrigeration
      9. 18.9 Heat Pump
      10. 18.10 Closure
      11. Review Questions
      12. Problems
  13. Part VI – Compressors and Turbines
    1. Chapter 19: Reciprocating Compressors
      1. 19.1 Introduction
      2. 19.2 Classification of Compressors
      3. 19.3 Reciprocating Compressors
      4. 19.4 Indicated Work
        1. 19.4.1 Indicated Power in Terms of Pressure Ratio
      5. 19.5 Minimum Work
      6. 19.6 Clearance Volume
      7. 19.7 Volumetric Efficiency
      8. 19.8 Multistage Compression
        1. 19.8.1 Two Stage Compression
        2. 19.8.2 Intercooling
        3. 19.8.3 The Optimum Intermediate Pressure
      9. 19.9 Closure
      10. Review Questions
      11. Problems
    2. Chapter 20: Turbines
      1. 20.1 Introduction
      2. 20.2 Definition of a Turbine
      3. 20.3 Classification of Turbines
        1. 20.3.1 Impulse Turbines
        2. 20.3.2 Reaction Turbines
        3. 20.3.3 Specific Speed
      4. 20.4 Thermodynamics of Turbines
        1. 20.4.1 Isentropic Turbine Efficiency
        2. 20.4.2 Actual Turbine Efficiency
      5. 20.5 Energy Transfer in Turbo Machinery
        1. 20.5.1 Turbine Impulse Stage
        2. 20.5.2 Turbine Reaction Stage
      6. 20.6 Uses of Turbines
      7. 20.7 Closure
      8. Review Questions
      9. Problems
  14. Part VII – Introduction to Compressible Flow
    1. Chapter 21: Fundamentals of Compressible Flow
      1. 21.1 Introduction
      2. 21.2 Fundamental Equations of Fluid Flow
        1. 21.2.1 Continuity Equation
        2. 21.2.2 Momentum Equation
        3. 21.2.3 Energy Equation
        4. 21.2.4 Equation of State
      3. 21.3 Acoustic Velocity; Mach Number
      4. 21.4 Pressure Field Due to Moving Source
      5. 21.5 Stagnation Properties
      6. 21.6 Flow Through Nozzles
        1. 21.6.1 Basics of Nozzle Flow
        2. 21.6.2 Reference Speeds
        3. 21.6.3 Nozzle Flow Relations
        4. 21.6.4 Convergent Nozzle
        5. 21.6.5 Convergent–Divergent Nozzle
        6. 21.6.6 Nozzle and Diffuser Coefficients
      7. 21.7 Flow in Constant–Area Duct with Friction; Fanno Line
      8. 21.8 Flow in Constant–Area Duct with Heat Transfer: Rayleigh Line
        1. 21.8.1 Simple Types of Flow
      9. 21.9 Normal Shock
        1. 21.9.1 Analysis of Shock Waves
        2. 21.9.2 Prandtl Relation for Normal Shock
        3. 21.9.3 Mach Number Relations for Pressure and Temperature Ratios
        4. 21.9.4 Rankine–Hugoniot Relation for Normal Shock
        5. 21.9.5 Rayleigh Supersonic Pitot Tube Equation
      10. 21.10 Closure
      11. Review Questions
      12. Problems
  15. Appendix A
  16. Appendix B
  17. Appendix C
  18. Appendix D
  19. Acknowledgements
  20. Copyright
  21. Back Cover