Chapter 7

Polynomial-Time Isomorphism

Two decision problems are said to be polynomial-time isomorphic if there is a membership-preserving one-to-one correspondence between the instances of the two problems, which is both polynomial-time computable and polynomial-time invertible. Thus, this is a stronger notion than the notion of equivalence under the polynomial-time many-one reductions. It has, however, been observed that many reductions constructed between natural NP-complete problems are not only many-one reductions but can also be easily converted to polynomial-time isomorphisms. This observation leads to the question of whether two NP-complete problems must be polynomial-time isomorphic. Indeed, if this is the case then, within a polynomial factor, all NP-complete problems are actually identical and any heuristics for a single NP-complete problem works for all of them. In this chapter, we study this question and the related questions about the isomorphism of EXP-complete and P-complete problems.

7.1 Polynomial-Time Isomorphism

Let us start with a simple example.

Example 7.1

Get Theory of Computational Complexity, 2nd Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.