O'Reilly logo

Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators by Randall Eubank, Tailen Hsing

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

2.5 The projection theorem and orthogonal decomposition

It is safe to say that almost every statistical problem eventually leads to some type of optimization problem with the classical Gauss–Markov Theorem providing an important case in point. Optimization in vector and function spaces becomes much more tractable when there is an inherent geometry that can be exploited to aid in the characterization of extrema. This is undoubtedly why Hilbert spaces have occupied such a central role in statistics.

The following result is fundamental in optimization theory.

 

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required