You are previewing The Ruby Programming Language.

The Ruby Programming Language

Cover of The Ruby Programming Language by Yukihiro Matsumoto... Published by O'Reilly Media, Inc.
  1. The Ruby Programming Language
    1. SPECIAL OFFER: Upgrade this ebook with O’Reilly
    2. A Note Regarding Supplemental Files
    3. Preface
      1. Acknowledgments
      2. Conventions Used in This Book
      3. Using Code Examples
      4. How to Contact Us
      5. Safari® Enabled
    4. 1. Introduction
      1. A Tour of Ruby
      2. Try Ruby
      3. About This Book
      4. A Sudoku Solver in Ruby
    5. 2. The Structure and Execution of Ruby Programs
      1. Lexical Structure
      2. Syntactic Structure
      3. File Structure
      4. Program Encoding
      5. Program Execution
    6. 3. Datatypes and Objects
      1. Numbers
      2. Text
      3. Arrays
      4. Hashes
      5. Ranges
      6. Symbols
      7. True, False, and Nil
      8. Objects
    7. 4. Expressions and Operators
      1. Literals and Keyword Literals
      2. Variable References
      3. Constant References
      4. Method Invocations
      5. Assignments
      6. Operators
    8. 5. Statements and Control Structures
      1. Conditionals
      2. Loops
      3. Iterators and Enumerable Objects
      4. Blocks
      5. Altering Control Flow
      6. Exceptions and Exception Handling
      7. BEGIN and END
      8. Threads, Fibers, and Continuations
    9. 6. Methods, Procs, Lambdas, and Closures
      1. Defining Simple Methods
      2. Method Names
      3. Methods and Parentheses
      4. Method Arguments
      5. Procs and Lambdas
      6. Closures
      7. Method Objects
      8. Functional Programming
    10. 7. Classes and Modules
      1. Defining a Simple Class
      2. Method Visibility: Public, Protected, Private
      3. Subclassing and Inheritance
      4. Object Creation and Initialization
      5. Modules
      6. Loading and Requiring Modules
      7. Singleton Methods and the Eigenclass
      8. Method Lookup
      9. Constant Lookup
    11. 8. Reflection and Metaprogramming
      1. Types, Classes, and Modules
      2. Evaluating Strings and Blocks
      3. Variables and Constants
      4. Methods
      5. Hooks
      6. Tracing
      7. ObjectSpace and GC
      8. Custom Control Structures
      9. Missing Methods and Missing Constants
      10. Dynamically Creating Methods
      11. Alias Chaining
      12. Domain-Specific Languages
    12. 9. The Ruby Platform
      1. Strings
      2. Regular Expressions
      3. Numbers and Math
      4. Dates and Times
      5. Collections
      6. Files and Directories
      7. Input/Output
      8. Networking
      9. Threads and Concurrency
    13. 10. The Ruby Environment
      1. Invoking the Ruby Interpreter
      2. The Top-Level Environment
      3. Practical Extraction and Reporting Shortcuts
      4. Calling the OS
      5. Security
    14. Index
    15. About the Authors
    16. Colophon
    17. SPECIAL OFFER: Upgrade this ebook with O’Reilly
O'Reilly logo

Modules

Like a class, a module is a named group of methods, constants, and class variables. Modules are defined much like classes are, but the module keyword is used in place of the class keyword. Unlike a class, however, a module cannot be instantiated, and it cannot be subclassed. Modules stand alone; there is no “module hierarchy” of inheritance.

Modules are used as namespaces and as mixins. The subsections that follow explain these two uses.

Just as a class object is an instance of the Class class, a module object is an instance of the Module class. Class is a subclass of Module. This means that all classes are modules, but not all modules are classes. Classes can be used as namespaces, just as modules can. Classes cannot, however, be used as mixins.

Modules as Namespaces

Modules are a good way to group related methods when object-oriented programming is not necessary. Suppose, for example, you were writing methods to encode and decode binary data to and from text using the Base64 encoding. There is no need for special encoder and decoder objects, so there is no reason to define a class here. All we need are two methods: one to encode and one to decode. We could define just two global methods:

def base64_encode
end

def base64_decode
end

To prevent namespace collisions with other encoding and decoding methods, we’ve given our method names the base64 prefix. This solution works, but most programmers prefer to avoid adding methods to the global namespace when possible. A better solution, ...

The best content for your career. Discover unlimited learning on demand for around $1/day.