You are previewing The Ruby Programming Language.

The Ruby Programming Language

Cover of The Ruby Programming Language by Yukihiro Matsumoto... Published by O'Reilly Media, Inc.
  1. The Ruby Programming Language
    1. SPECIAL OFFER: Upgrade this ebook with O’Reilly
    2. A Note Regarding Supplemental Files
    3. Preface
      1. Acknowledgments
      2. Conventions Used in This Book
      3. Using Code Examples
      4. How to Contact Us
      5. Safari® Enabled
    4. 1. Introduction
      1. A Tour of Ruby
      2. Try Ruby
      3. About This Book
      4. A Sudoku Solver in Ruby
    5. 2. The Structure and Execution of Ruby Programs
      1. Lexical Structure
      2. Syntactic Structure
      3. File Structure
      4. Program Encoding
      5. Program Execution
    6. 3. Datatypes and Objects
      1. Numbers
      2. Text
      3. Arrays
      4. Hashes
      5. Ranges
      6. Symbols
      7. True, False, and Nil
      8. Objects
    7. 4. Expressions and Operators
      1. Literals and Keyword Literals
      2. Variable References
      3. Constant References
      4. Method Invocations
      5. Assignments
      6. Operators
    8. 5. Statements and Control Structures
      1. Conditionals
      2. Loops
      3. Iterators and Enumerable Objects
      4. Blocks
      5. Altering Control Flow
      6. Exceptions and Exception Handling
      7. BEGIN and END
      8. Threads, Fibers, and Continuations
    9. 6. Methods, Procs, Lambdas, and Closures
      1. Defining Simple Methods
      2. Method Names
      3. Methods and Parentheses
      4. Method Arguments
      5. Procs and Lambdas
      6. Closures
      7. Method Objects
      8. Functional Programming
    10. 7. Classes and Modules
      1. Defining a Simple Class
      2. Method Visibility: Public, Protected, Private
      3. Subclassing and Inheritance
      4. Object Creation and Initialization
      5. Modules
      6. Loading and Requiring Modules
      7. Singleton Methods and the Eigenclass
      8. Method Lookup
      9. Constant Lookup
    11. 8. Reflection and Metaprogramming
      1. Types, Classes, and Modules
      2. Evaluating Strings and Blocks
      3. Variables and Constants
      4. Methods
      5. Hooks
      6. Tracing
      7. ObjectSpace and GC
      8. Custom Control Structures
      9. Missing Methods and Missing Constants
      10. Dynamically Creating Methods
      11. Alias Chaining
      12. Domain-Specific Languages
    12. 9. The Ruby Platform
      1. Strings
      2. Regular Expressions
      3. Numbers and Math
      4. Dates and Times
      5. Collections
      6. Files and Directories
      7. Input/Output
      8. Networking
      9. Threads and Concurrency
    13. 10. The Ruby Environment
      1. Invoking the Ruby Interpreter
      2. The Top-Level Environment
      3. Practical Extraction and Reporting Shortcuts
      4. Calling the OS
      5. Security
    14. Index
    15. About the Authors
    16. Colophon
    17. SPECIAL OFFER: Upgrade this ebook with O’Reilly
O'Reilly logo

Iterators and Enumerable Objects

Although while, until, and for loops are a core part of the Ruby language, it is probably more common to write loops using special methods known as iterators. Iterators are one of the most noteworthy features of Ruby, and examples such as the following are common in introductory Ruby tutorials:

3.times { puts "thank you!" }  # Express gratitude three times
data.each {|x| puts x }        # Print each element x of data
[1,2,3].map {|x| x*x }         # Compute squares of array elements
factorial = 1                  # Compute the factorial of n
2.upto(n) {|x| factorial *= x }

The times, each, map, and upto methods are all iterators, and they interact with the block of code that follows them. The complex control structure behind this is yield. The yield statement temporarily returns control from the iterator method to the method that invoked the iterator. Specifically, control flow goes from the iterator to the block of code associated with the invocation of the iterator. When the end of the block is reached, the iterator method regains control and execution resumes at the first statement following the yield. In order to implement some kind of looping construct, an iterator method will typically invoke the yield statement multiple times. Figure 5-1 illustrates this complex flow of control. Blocks and yield are described in detail in Blocks below; for now, we focus on the iteration itself rather than the control structure that enables it.

Figure 5-1. An iterator yielding to its invoking ...

The best content for your career. Discover unlimited learning on demand for around $1/day.