## With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

No credit card required

## Book Description

The Book of R teaches statistics and programming in R for beginners.

## Table of Contents

1. Cover
2. Title
3. Copyright
4. Brief Contents
5. Contents in Detail
6. Preface
7. Acknowledgments
8. Introduction
1. A Brief History of R
2. About This Book
3. For Students
4. For Instructors
9. Part I: The Language
10. Chapter 1: Getting Started
1. 1.1 Obtaining and Installing R from CRAN
2. 1.2 Opening R for the First Time
3. 1.3 Saving Work and Exiting R
4. 1.4 Conventions
11. Chapter 2: Numerics, Arithmetic, Assignment, and Vectors
1. 2.1 R for Basic Math
2. 2.2 Assigning Objects
3. 2.3 Vectors
12. Chapter 3: Matrices and Arrays
1. 3.1 Defining a Matrix
2. 3.2 Subsetting
3. 3.3 Matrix Operations and Algebra
4. 3.4 Multidimensional Arrays
13. Chapter 4: Non-numeric Values
1. 4.1 Logical Values
2. 4.2 Characters
3. 4.3 Factors
14. Chapter 5: Lists and Data Frames
1. 5.1 Lists of Objects
2. 5.2 Data Frames
15. Chapter 6: Special Values, Classes, and Coercion
1. 6.1 Some Special Values
2. 6.2 Understanding Types, Classes, and Coercion
16. Chapter 7: Basic Plotting
1. 7.1 Using plot with Coordinate Vectors
2. 7.2 Graphical Parameters
3. 7.3 Adding Points, Lines, and Text to an Existing Plot
4. 7.4 The ggplot2 Package
17. Chapter 8: Reading and Writing Files
1. 8.1 R-Ready Data Sets
2. 8.2 Reading in External Data Files
3. 8.3 Writing Out Data Files and Plots
4. 8.4 Ad Hoc Object Read/Write Operations
18. Part II: Programming
19. Chapter 9: Calling Functions
1. 9.1 Scoping
2. 9.2 Argument Matching
20. Chapter 10: Conditions and Loops
1. 10.1 if Statements
2. 10.2 Coding Loops
3. 10.3 Other Control Flow Mechanisms
21. Chapter 11: Writing Functions
1. 11.1 The function Command
2. 11.2 Arguments
3. 11.3 Specialized Functions
22. Chapter 12: Exceptions, Timings, and Visibility
1. 12.1 Exception Handling
2. 12.2 Progress and Timing
3. 12.3 Masking
23. Part III: Statistics and Probability
24. Chapter 13: Elementary Statistics
1. 13.1 Describing Raw Data
2. 13.2 Summary Statistics
25. Chapter 14: Basic Data Visualization
1. 14.1 Barplots and Pie Charts
2. 14.2 Histograms
3. 14.3 Box-and-Whisker Plots
4. 14.4 Scatterplots
26. Chapter 15: Probability
1. 15.1 What Is a Probability?
2. 15.2 Random Variables and Probability Distributions
27. Chapter 16: Common Probability Distributions
1. 16.1 Common Probability Mass Functions
2. 16.2 Common Probability Density Functions
28. Part IV: Statistical Testing and Modeling
29. Chapter 17: Sampling Distributions and Confidence
1. 17.1 Sampling Distributions
2. 17.2 Confidence Intervals
30. Chapter 18: Hypothesis Testing
1. 18.1 Components of a Hypothesis Test
2. 18.2 Testing Means
3. 18.3 Testing Proportions
4. 18.4 Testing Categorical Variables
5. 18.5 Errors and Power
31. Chapter 19: Analysis of Variance
1. 19.1 One-Way ANOVA
2. 19.2 Two-Way ANOVA
3. 19.3 Kruskal-Wallis Test
32. Chapter 20: Simple Linear Regression
1. 20.1 An Example of a Linear Relationship
2. 20.2 General Concepts
3. 20.3 Statistical Inference
4. 20.4 Prediction
5. 20.5 Understanding Categorical Predictors
33. Chapter 21: Multiple Linear Regression
1. 21.1 Terminology
2. 21.2 Theory
3. 21.3 Implementing in R and Interpreting
4. 21.4 Transforming Numeric Variables
5. 21.5 Interactive Terms
34. Chapter 22: Linear Model Selection and Diagnostics
1. 22.1 Goodness-of-Fit vs. Complexity
2. 22.2 Model Selection Algorithms
3. 22.3 Residual Diagnostics
4. 22.4 Collinearity
35. Part V: Advanced Graphics
36. Chapter 23: Advanced Plot Customization
1. 23.1 Handling the Graphics Device
2. 23.2 Plotting Regions and Margins
3. 23.3 Point-and-Click Coordinate Interaction
4. 23.4 Customizing Traditional R Plots
5. 23.5 Specialized Text and Label Notation
6. 23.6 A Fully Annotated Scatterplot
37. Chapter 24: Going Further with the Grammar of Graphics
1. 24.1 ggplot or qplot?
2. 24.2 Smoothing and Shading
3. 24.3 Multiple Plots and Variable-Mapped Facets
4. 24.4 Interactive Tools in ggvis
38. Chapter 25: Defining Colors and Plotting in Higher Dimensions
1. 25.1 Representing and Using Color
2. 25.2 3D Scatterplots
3. 25.3 Preparing a Surface for Plotting
4. 25.4 Contour Plots
5. 25.5 Pixel Images
6. 25.6 Perspective Plots
39. Chapter 26: Interactive 3D Plots
1. 26.1 Point Clouds
2. 26.2 Bivariate Surfaces
3. 26.3 Trivariate Surfaces
4. 26.4 Handling Parametric Equations
40. Appendix A: Installing R and Contributed Packages
1. A.1 Downloading and Installing R
2. A.2 Using Packages
3. A.3 Updating R and Installed Packages
4. A.4 Using Other Mirrors and Repositories
5. A.5 Citing and Writing Packages
41. Appendix B: Working with RStudio
1. B.1 Basic Layout and Usage
2. B.2 Auxiliary Tools
42. Reference List
43. Index