O'Reilly logo

The Analytics of Risk Model Validation by Stephen Satchell, George A. Christodoulakis

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

4

A moments-based procedure for evaluating risk forecasting models

Kevin Dowd** Nottingham University Business School, Jubilee Campus, Nottingham, UK

Abstract

This chapter examines the important problem of evaluating a risk forecasting model [e.g. a values-at-risk (VaR) model]. Its point of departure is the likelihood ratio (LR) test applied to data that have gone through Probability Integral Transform and Berkowitz transformations to become standard normal under the null hypothesis of model adequacy. However, the LR test is poor at detecting model inadequacy that manifests itself in the transformed data being skewed or fat-tailed. To remedy this problem, the chapter proposes a new procedure that combines tests of the predictions of the first four ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required