You are previewing Solid State Physics.
O'Reilly logo
Solid State Physics

Book Description

Solid state physics forms an important part of the undergraduate syllabi of physics in most of the universities. The existing competing books by Indian authors have too complex technical language which makes them abstractive to Indian students who use English as their secondary language. Solid State Physics is written as per the core module syllabus of the major universities and targets undergraduate B.Sc students. The book uses lecture style in explaining the concepts which would facilitate easy understanding of the concepts. The topics have been dealt with precision and provide adequate knowledge of the subject.

Table of Contents

  1. Cover
  2. Title Page
  3. Brief Contents
  4. Contents
  5. About the Author
  6. Dedication
  7. Preface
  8. Chapter 1. Crystal Structure
    1. 1.1 Introduction
    2. 1.2 Lattice and Basis
    3. 1.3 Lattice Translation Vector
    4. 1.4 Primitive Cells and Unit Cells
    5. 1.5 Wigner–Seitz Cell
    6. 1.6 Indexing of Planes, Directions, and Positions of Atoms
    7. 1.7 Crystal Systems
    8. 1.8 Bravais Lattices
    9. 1.9 Symmetry Operations
    10. 1.10 Point Groups
    11. 1.11 Space Groups
    12. 1.12 Screw Axis
    13. 1.13 Glide Plane
    14. 1.14 Types of Lattices (in 2D and 3D)
    15. 1.15 Some Crystal Structures
    16. 1.16 Close-packed Structure
    17. 1.17 BCC Structure
    18. 1.18 Cesium Chloride
    19. 1.19 Sodium Chloride
    20. 1.20 Diamond Structure
    21. 1.21 Zincblende Structure
    22. 1.22 Simple Cubic Structure
    23. 1.23 Polymorphism and Polytypism
    24. Summary
    25. Problems
    26. References
  9. Chapter 2. Crystal Structure Determination
    1. 2.1 X-Ray Diffraction
    2. 2.2 Laue's Treatment
    3. 2.3 Bragg's Treatment
    4. 2.4 Experimental Methods of X-Ray Diffraction
    5. 2.4.1 Laue's Method
    6. 2.4.2 Rotating Crystal Method
    7. 2.4.3 Powder Method
    8. 2.5 Intensity of X-Ray Reflections
    9. 2.5.1 Atomic Scattering Factor
    10. 2.5.2 Geometrical Structure Factor
    11. 2.5.3 Other Factors Affecting Intensity
    12. 2.6 Reciprocal Lattice
    13. 2.6.1 Square Lattice
    14. 2.6.2 Parallelogram Lattice
    15. 2.6.3 Monoclinic Lattice
    16. 2.6.4 Relation Between Direct Lattice and Reciprocal Lattice Vectors
    17. 2.6.5 Reciprocal to Simple Cubic Lattice
    18. 2.6.6 Reciprocal to BCC Lattice
    19. 2.6.7 Reciprocal to FCC Lattice
    20. 2.6.8 Reciprocal Space or Fourier Space or k Space
    21. 2.7 Bragg's Law in Ewald Construction
    22. 2.8 Brillouin Zones
    23. 2.8.1 Brillouin Zones of Square Planar Lattice
    24. 2.8.2 Brillouin Zones of BCC Lattice
    25. 2.8.3 First BZ of FCC Lattice
    26. 2.9 Electron Diffraction
    27. 2.10 Neutron Diffraction
    28. Summary
    29. Problems
    30. References
  10. Chapter 3. Crystal Binding
    1. 3.1 Introduction
    2. 3.2 Ionic Bonding
    3. 3.3 Covalent Bonding
    4. 3.4 Metallic Bonding
    5. 3.5 Bonding in Inert Gases
    6. 3.6 Hydrogen Bond
    7. Summary
    8. Problems
    9. References
  11. Chapter 4. Lattice Vibrations
    1. 4.1 Elastic Waves
    2. 4.2 Vibrations of 1D Monoatomic Lattice
    3. 4.3 Vibrations of a 1D Diatomic Lattice
    4. 4.3.1 Optical Branches in Ionic Crystals (Infrared Absorption)
    5. 4.3.2 Three-dimensional Lattice
    6. 4.4 Phonons
    7. 4.5 Experimental Determination of Dispersion Relations for Lattice Vibrations by Inelastic Neutron Scattering
    8. Summary
    9. Problems
    10. References
  12. Chapter 5. Thermal Properties of Solids
    1. 5.1 Introduction
    2. 5.2 Dulong–Petit's Law
    3. 5.3 Einstein Theory of Specific Heat
    4. 5.4 Debye's Theory of Specific Heat
    5. 5.5 Thermal Expansion
    6. 5.6 Thermal Conductivity
    7. 5.7 Factors Affecting Thermal Conductivity
    8. Summary
    9. Problems
    10. References
  13. Chapter 6. Dielectric Properties
    1. 6.1 Introduction
    2. 6.2 Local Field
    3. 6.3 Clausius–Mossotti Relation
    4. 6.4 Components of Polarizability
    5. 6.4.1 Electronic Polarizability
    6. 6.4.2 Ionic Polarizability
    7. 6.4.3 Orientational Polarizability
    8. 6.4.4 Total Polarizability
    9. 6.5 Measurement of Dielectric Constant
    10. 6.6 Ferroelectricity
    11. 6.7 Electrets (Including Magnetoelectrets and Photoelectrets)
    12. 6.8 Hysteresis (Including Domains and Pyroelectricity)
    13. 6.9 Piezoelectricity
    14. 6.10 Electrostriction
    15. 6.11 Applications
    16. Summary
    17. Problems
    18. References
  14. Chapter 7. Free Electron Theory of Metals: Part 1: Model and Applications to Static Properties
    1. 7.1 Introduction
    2. 7.2 Electrical Conductivity (Drude Explanation)
    3. 7.3 Thermal Conductivity
    4. 7.4 Other Metallic Properties
    5. 7.4.1 Specific Heat
    6. 7.4.2 Paramagnetic Susceptibility
    7. 7.4.3 Diamagnetic Susceptibility
    8. 7.4.4 Lorentz Treatment
    9. 7.5 Sommerfeld Treatment of Electron Gas
    10. 7.6 Fermi—Dirac Statistics
    11. 7.7 Density of Electronic States
    12. 7.8 Some Other Metallic Properties
    13. 7.8.1 Paramagnetic Susceptibility of Electron Gas
    14. 7.8.2 Electronic Specific Heat
    15. 7.8.3 Diamagnetic Susceptibility of Free Electrons
    16. Summary
    17. Problems
    18. References
  15. Chapter 8. Free Electron Theory of Metals: Part 2: Applications to Transport Properties
    1. 8.1 Boltzmann Transport Equation
    2. 8.2 Sommerfeld Theory of Electrical Conductivity and Related Phenomena
    3. 8.2.1 Sommerfeld Theory of Electrical Conductivity
    4. 8.2.2 Thermal Conductivity in Metals
    5. 8.2.3 Hall Effect (Metals)
    6. 8.2.4 Hall Effect (Semiconductors)
    7. 8.2.5 Temperature Effect on the Hall Effect of Extrinsic Semiconductors
    8. 8.2.6 Effect of Magnetic Field on the Hall Constant
    9. 8.2.7 Ettingshausen Effect
    10. 8.2.8 Applications of the Hall Effect
    11. 8.3 Thermoelectric Effects
    12. 8.3.1 Thermopower
    13. 8.3.2 Thomson Effect
    14. 8.3.3 Seebeck Effect
    15. 8.3.4 Peltier Effect
    16. 8.3.5 Thomson Relationship
    17. 8.4 Quantum Hall Effect
    18. 8.4.1 Integral Quantum Hall Effect
    19. 8.4.2 Fractional Quantum Hall Effect
    20. Summary
    21. Problems
    22. References
  16. Chapter 9. Energy Bands in Solids
    1. 9.1 Introduction
    2. 9.2 Bloch Theorem and Bloch Functions
    3. 9.3 Kronig–Penney Model of Behavior of an Electron in a Periodic Potential
    4. 9.4 New Interpretation of Momentum, Velocity, and Mass of Electrons Derived from the Kronig–Penney Model of Motion of Electrons in a 1D Periodic Crystal
    5. 9.5 E–K Relationships in Various Representations
    6. 9.5.1 Periodic Zone Scheme
    7. 9.5.2 Extended Zone Scheme
    8. 9.6 Number of Possible States or Wavefunctions in an Energy Band
    9. 9.7 Energy Band Calculations
    10. 9.7.1 Origin of the Energy Gap
    11. 9.7.2 The NFE Approximation
    12. 9.7.3 The TB Approximation
    13. 9.7.4 Energy Bands in Insulators, Semiconductors, and Metals
    14. 9.8 Fermi Surfaces
    15. 9.8.1 The Harrison Method of Constructing the Fermi Surfaces
    16. 9.8.2 Fermi Surfaces in Metals
    17. 9.9 The Experimental Study of Fermi Surfaces
    18. 9.9.1 The dHvA Effect
    19. 9.9.2 Cyclotron Resonance
    20. Summary
    21. Problems
    22. References
  17. Chapter 10. Band Theory of Insulators and Semiconductors
    1. 10.1 Introduction
    2. 10.1.1 Materials Used as Semiconductors
    3. 10.1.2 Band Gaps of Some Semiconductor Materials
    4. 10.1.3 Direct and Indirect Band Gaps
    5. 10.1.4 Band Structure of Semiconductor Materials
    6. 10.2 Classification of Semiconductors into Pure and Impure Types
    7. 10.2.1 Intrinsic Semiconductors
    8. 10.2.2 Concentration of Electrons in the Conduction Band
    9. 10.2.3 Hole Concentration in the Valence Band
    10. 10.2.4 Fermi Level in Intrinsic Semiconductor
    11. 10.2.5 Law of Mass Action
    12. 10.2.6 Electrical Conductivity in Intrinsic Semiconductors
    13. 10.3 Extrinsic Semiconductors
    14. 10.4 Statistics of Extrinsic Semiconductors (Carrier Concentration, Fermi Level, and Electrical Conductivity)
    15. 10.4.1 Statistics of the n-type Semiconductors
    16. 10.4.2 Statistics of the p-type Semiconductors
    17. 10.4.3 Mixed Semiconductors
    18. 10.5 Junction Properties
    19. 10.5.1 Metal–Metal Contacts
    20. 10.5.2 p–n Junction
    21. 10.5.3 Energy Bands of Semiconductors with p–n Junctions
    22. 10.5.4 Effect of External Voltage on the Width of the Depletion Layer
    23. 10.5.5 Devices Using p–n Junctions
    24. 10.6 Transistors
    25. Summary
    26. Problems
    27. References
  18. Chapter 11. Magnetism
    1. 11.1 Introduction
    2. 11.2 Magnetic Moment of an Atom
    3. 11.3 Magnetic Susceptibility of Diamagnetic Substances (Classical Method)
    4. 11.4 Quantum Mechanical Treatment of Diamagnetic Susceptibility
    5. 11.5 Susceptibility of Paramagnetic Substances (Classical Method)
    6. 11.6 Susceptibility of Paramagnetic Substances (Quantum Mechanical Treatment)
    7. 11.7 Nuclear Paramagnetism
    8. 11.8 Paramagnetism of Metals (Pauli Paramagnetism)
    9. 11.9 Landau Diamagnetism
    10. 11.10 Cooling by Adiabatic Demagnetization
    11. 11.11 Ferromagnetism
    12. 11.12 Magnetic Susceptibility of Ferromagnetic Substances at Temperatures Greater than Tc
    13. 11.13 Direction of the Magnetic Moment of Ferromagnetics (Energy of Magnetic Anisotropy)
    14. 11.14 Magnetization or Hysteresis Curve of Ferromagnetic Materials
    15. 11.15 Origin of Ferromagnetic Domains
    16. 11.16 The Bloch Wall
    17. 11.17 Viewing of Domain Structure
    18. 11.18 Antiferromagnetism
    19. 11.18.1 Molecular Field Theory of Antiferromagnetism
    20. 11.19 Ferrimagnetism
    21. 11.20 Spin Waves (Magnons)
    22. 11.21 Spontaneous Magnetization at a Temperature T: Bloch T3/2 Law
    23. 11.22 Magnons in Antiferromagnets
    24. 11.23 Some New Magnetic Materials: GMR–CMR Effects
    25. 11.24 Colossal Magnetoresistance
    26. Summary
    27. Problems
    28. References
  19. Chapter 12. Magnetic Resonances
    1. 12.1 Introduction
    2. 12.2 Nuclear Magnetic Resonance
    3. 12.2.1 Chemical Shift
    4. 12.2.2 Spin–Spin Splitting
    5. 12.2.3 Width of Signal
    6. 12.2.4 The Bloch Theory
    7. 12.2.5 The NMR Apparatus
    8. 12.2.6 Applications of NMR
    9. 12.3 The Electron Paramagnetic Resonance
    10. 12.3.1 The EPR Apparatus
    11. 12.3.2 Relaxation Processes
    12. 12.3.3 Materials Giving EPR Signals
    13. 12.3.4 Fine Structure Splitting
    14. 12.3.5 The Hyperfine Structure
    15. 12.3.6 Applications
    16. 12.4 The Ferromagnetic Resonance
    17. 12.5 The Nuclear Quadrupole Resonance
    18. Summary
    19. Problems
    20. References
  20. Chapter 13. Superconductivity
    1. 13.1 Superconductivity
    2. 13.2 Experimental Attributes of Superconductivity
    3. 13.2.1 Critical Temperature
    4. 13.2.2 Critical Magnetic Field
    5. 13.2.3 Critical Current
    6. 13.2.4 Persistent Current
    7. 13.2.5 Effects of Magnetic field
    8. 13.2.6 Type 1 and Type 2 Superconductors
    9. 13.2.7 Intermediate State
    10. 13.2.8 Vortex State
    11. 13.2.9 Thermal Conductivity
    12. 13.2.10 Entropy
    13. 13.2.11 Specific Heat
    14. 13.2.12 Energy Gap
    15. 13.2.13 Microwaves and Infrared Properties
    16. 13.2.14 Isotope Effect
    17. 13.2.15 Coherence Length
    18. 13.2.16 Best Conductors Are Not Superconductors
    19. 13.3 Theoretical Aspects of Superconductivity
    20. 13.3.1 Thermodynamics of Superconducting Transition
    21. 13.3.2 The London Equations
    22. 13.3.3 Ginzburg–Landau Theory
    23. 13.3.4 The BCS Theory
    24. 13.4 Single Particle Tunneling and Josephson's Effects
    25. 13.4.1 Giaever Tunneling
    26. 13.4.2 DC Josephson Effect
    27. 13.4.3 AC Josephson Effect
    28. 13.4.4 Macroscopic Quantum Interference
    29. 13.5 High-temperature Superconductivity
    30. 13.5.1 Chronological Growth of Tc of Superconductors
    31. 13.5.2 Some HTS and their Tc values
    32. 13.5.3 Comparison of the Conventional Superconductors and HTSs
    33. 13.5.4 The Crystal Structure of Some HTS
    34. 13.5.5 Proposed Mechanisms of High-temperature Superconductivity
    35. 13.5.6 Symmetry of the Order Parameter in HTS
    36. Summary
    37. Problems
    38. References
  21. Chapter 14. Optical Properties of Solids
    1. 14.1 Introduction
    2. 14.1.1 The Interaction of Light with Solids
    3. 14.1.2 Experimentally Observed Quantities
    4. 14.1.3 Connection of the Empirically Observed Quantities with the Optical Constants and the Dielectric Constants
    5. 14.1.4 Optical Properties of Metals and their Relation to the Dielectric Constants
    6. 14.2 Luminescence of Solids
    7. 14.3 Types of Luminescent Systems
    8. 14.3.1 Absorption and Emission of Energy at the Same Center
    9. 14.3.2 Luminescence Due to Energy Transfer With No Movement of Charge
    10. 14.3.3 Luminescence in Systems Involving Transfer of Charge
    11. 14.4 Electroluminescence
    12. 14.5 The Excitons
    13. 14.5.1 Weakly Bound Excitons (Mott and Wannier)
    14. 14.5.2 Tightly Bound Excitons (Frenkel)
    15. 14.6 Color Centers
    16. 14.6.1 F-center
    17. Summary
    18. Problems
    19. References
  22. Appendix A: Table of Constants
  23. Appendix B: Notes on the Units of Measurement
  24. Appendix C: Conversion Factors of CGS Units in Mechanics
  25. Acknowledgements
  26. Copyright