You are previewing RF and Microwave Transmitter Design.
O'Reilly logo
RF and Microwave Transmitter Design

Book Description

RF and Microwave Transmitter Design is unique in its coverage of both historical transmitter design and cutting edge technologies. This text explores the results of well-known and new theoretical analyses, while informing readers of modern radio transmitters' pracitcal designs and their components. Jam-packed with information, this book broadcasts and streamlines the author's considerable experience in RF and microwave design and development.

Table of Contents

  1. Cover
  2. Series
  3. Title Page
  4. Copyright
  5. Preface
    1. ACKNOWLEDGMENTS
  6. Introduction
    1. REFERENCES
  7. 1: Passive Elements and Circuit Theory
    1. 1.1 IMMITTANCE TWO-PORT NETWORK PARAMETERS
    2. 1.2 SCATTERING PARAMETERS
    3. 1.3 INTERCONNECTIONS OF TWO-PORT NETWORKS
    4. 1.4 PRACTICAL TWO-PORT NETWORKS
    5. 1.5 THREE-PORT NETWORK WITH COMMON TERMINAL
    6. 1.6 LUMPED ELEMENTS
    7. 1.7 TRANSMISSION LINE
    8. 1.8 TYPES OF TRANSMISSION LINES
    9. 1.9 NOISE
    10. REFERENCES
  8. 2: Active Devices and Modeling
    1. 2.1 DIODES
    2. 2.2 VARACTORS
    3. 2.3 MOSFETs
    4. 2.4 MESFETs AND HEMTs
    5. 2.5 BJTs AND HBTs
    6. REFERENCES
  9. 3: Impedance Matching
    1. 3.1 MAIN PRINCIPLES
    2. 3.2 SMITH CHART
    3. 3.3 MATCHING WITH LUMPED ELEMENTS
    4. 3.4 MATCHING WITH TRANSMISSION LINES
    5. 3.5 MATCHING NETWORKS WITH MIXED LUMPED AND DISTRIBUTED ELEMENTS
    6. REFERENCES
  10. 4: Power Transformers, Combiners, and Couplers
    1. 4.1 BASIC PROPERTIES
    2. 4.2 TRANSMISSION-LINE TRANSFORMERS AND COMBINERS
    3. 4.3 BALUNS
    4. 4.4 WILKINSON POWER DIVIDERS/COMBINERS
    5. 4.5 MICROWAVE HYBRIDS
    6. 4.6 COUPLED-LINE DIRECTIONAL COUPLERS
    7. REFERENCES
  11. 5: Filters
    1. 5.1 TYPES OF FILTERS
    2. 5.2 FILTER DESIGN USING IMAGE PARAMETER METHOD
    3. 5.3 FILTER DESIGN USING INSERTION LOSS METHOD
    4. 5.4 BANDPASS AND BANDSTOP TRANSFORMATION
    5. 5.5 TRANSMISSION-LINE LOW-PASS FILTER IMPLEMENTATION
    6. 5.6 COUPLED-LINE FILTERS
    7. 5.7 SAW AND BAW FILTERS
    8. REFERENCES
  12. 6: Modulation and Modulators
    1. 6.1 AMPLITUDE MODULATION
    2. 6.2 SINGLE-SIDEBAND MODULATION
    3. 6.3 FREQUENCY MODULATION
    4. 6.4 PHASE MODULATION
    5. 6.5 DIGITAL MODULATION
    6. 6.6 CLASS-S MODULATOR
    7. 6.7 MULTIPLE ACCESS TECHNIQUES
    8. REFERENCES
  13. 7: Mixers and Multipliers
    1. 7.1 BASIC THEORY
    2. 7.2 SINGLE-DIODE MIXERS
    3. 7.3 BALANCED DIODE MIXERS
    4. 7.4 TRANSISTOR MIXERS
    5. 7.5 DUAL-GATE FET MIXER
    6. 7.6 BALANCED TRANSISTOR MIXERS
    7. 7.7 FREQUENCY MULTIPLIERS
    8. REFERENCES
  14. 8: Oscillators
    1. 8.1 OSCILLATOR OPERATION PRINCIPLES
    2. 8.2 OSCILLATOR CONFIGURATIONS AND HISTORICAL ASPECT
    3. 8.3 SELF-BIAS CONDITION
    4. 8.4 PARALLEL FEEDBACK OSCILLATOR
    5. 8.5 SERIES FEEDBACK OSCILLATOR
    6. 8.6 PUSH–PUSH OSCILLATORS
    7. 8.7 STABILITY OF SELF-OSCILLATIONS
    8. 8.8 OPTIMUM DESIGN TECHNIQUES
    9. 8.9 NOISE IN OSCILLATORS
    10. 8.10 VOLTAGE-CONTROLLED OSCILLATORS
    11. 8.11 CRYSTAL OSCILLATORS
    12. 8.12 DIELECTRIC RESONATOR OSCILLATORS
    13. REFERENCES
  15. 9: Phase-Locked Loops
    1. 9.1 BASIC LOOP STRUCTURE
    2. 9.2 ANALOG PHASE-LOCKED LOOPS
    3. 9.3 CHARGE-PUMP PHASE-LOCKED LOOPS
    4. 9.4 DIGITAL PHASE-LOCKED LOOPS
    5. 9.5 LOOP COMPONENTS
    6. 9.6 LOOP PARAMETERS
    7. 9.7 PHASE MODULATION USING PHASE-LOCKED LOOPS
    8. 9.8 FREQUENCY SYNTHESIZERS
    9. REFERENCES
  16. 10: Power Amplifier Design Fundamentals
    1. 10.1 POWER GAIN AND STABILITY
    2. 10.2 BASIC CLASSES OF OPERATION: A, AB, B, AND C
    3. 10.3 LINEARITY
    4. 10.4 NONLINEAR EFFECT OF COLLECTOR CAPACITANCE
    5. 10.5 DC BIASING
    6. 10.6 PUSH–PULL POWER AMPLIFIERS
    7. 10.7 BROADBAND POWER AMPLIFIERS
    8. 10.8 DISTRIBUTED POWER AMPLIFIERS
    9. 10.9 HARMONIC TUNING USING LOAD–PULL TECHNIQUES
    10. 10.10 THERMAL CHARACTERISTICS
    11. REFERENCES
  17. 11: High-Efficiency Power Amplifiers
    1. 11.1 CLASS D
    2. 11.2 CLASS F
    3. 11.3 INVERSE CLASS F
    4. 11.4 CLASS E WITH SHUNT CAPACITANCE
    5. 11.5 CLASS E WITH FINITE DC-FEED INDUCTANCE
    6. 11.6 CLASS E WITH QUARTERWAVE TRANSMISSION LINE
    7. 11.7 CLASS FE
    8. 11.8 CAD DESIGN EXAMPLE: 1.75 GHZ HBT CLASS E MMIC POWER AMPLIFIER
    9. REFERENCES
  18. 12: Linearization and Efficiency Enhancement Techniques
    1. 12.1 FEEDFORWARD AMPLIFIER ARCHITECTURE
    2. 12.2 CROSS CANCELLATION TECHNIQUE
    3. 12.3 REFLECT FORWARD LINEARIZATION AMPLIFIER
    4. 12.4 PREDISTORTION LINEARIZATION
    5. 12.5 FEEDBACK LINEARIZATION
    6. 12.6 DOHERTY POWER AMPLIFIER ARCHITECTURES
    7. 12.7 OUTPHASING POWER AMPLIFIERS
    8. 12.8 ENVELOPE TRACKING
    9. 12.9 SWITCHED MULTIPATH POWER AMPLIFIERS
    10. 12.10 KAHN EER TECHNIQUE AND DIGITAL POWER AMPLIFICATION
    11. REFERENCES
  19. 13: Control Circuits
    1. 13.1 POWER DETECTOR AND VSWR PROTECTION
    2. 13.2 SWITCHES
    3. 13.3 PHASE SHIFTERS
    4. 13.4 ATTENUATORS
    5. 13.5 VARIABLE GAIN AMPLIFIERS
    6. 13.6 LIMITERS
    7. REFERENCES
  20. 14: Transmitter Architectures
    1. 14.1 AMPLITUDE-MODULATED TRANSMITTERS
    2. 14.2 SINGLE-SIDEBAND TRANSMITTERS
    3. 14.3 FREQUENCY-MODULATED TRANSMITTERS
    4. 14.4 TELEVISION TRANSMITTERS
    5. 14.5 WIRELESS COMMUNICATION TRANSMITTERS
    6. 14.6 RADAR TRANSMITTERS
    7. 14.7 SATELLITE TRANSMITTERS
    8. 14.8 ULTRA-WIDEBAND COMMUNICATION TRANSMITTERS
  21. Index