You are previewing Radio Frequency Circuit Design, 2nd Edition.
O'Reilly logo
Radio Frequency Circuit Design, 2nd Edition

Book Description

This book focuses on components such as filters, transformers, amplifiers, mixers, and oscillators. Even the phase lock loop chapter (the last in the book) is oriented toward practical circuit design, in contrast to the more systems orientation of most communication texts.

Table of Contents

  1. Cover
  2. Title page
  3. Copyright page
  4. Dedication
  5. Preface to the Second Edition
  6. Preface to the First Edition
  7. CHAPTER ONE Information Transfer Technology
    1. 1.1 INTRODUCTION
    2. 1.2 INFORMATION AND CAPACITY
    3. 1.3 DEPENDENT STATES
    4. 1.4 BASIC TRANSMITTER–RECEIVER CONFIGURATION
    5. 1.5 ACTIVE DEVICE TECHNOLOGY
  8. CHAPTER TWO Resistors, Capacitors, and Inductors
    1. 2.1 INTRODUCTION
    2. 2.2 RESISTORS
    3. 2.3 CAPACITORS
    4. 2.4 INDUCTORS
    5. 2.5 CONCLUSIONS
  9. CHAPTER THREE Impedance Matching
    1. 3.1 INTRODUCTION
    2. 3.2 THE Q FACTOR
    3. 3.3 RESONANCE AND BANDWIDTH
    4. 3.4 UNLOADED Q
    5. 3.5 L CIRCUIT IMPEDANCE MATCHING
    6. 3.6 π TRANSFORMATION CIRCUIT
    7. 3.7 T TRANSFORMATION CIRCUIT
    8. 3.8 TAPPED CAPACITOR TRANSFORMER
    9. 3.9 PARALLEL DOUBLE-TUNED TRANSFORMER
    10. 3.10 CONCLUSIONS
  10. CHAPTER FOUR Multiport Circuit Parameters and Transmission Lines
    1. 4.1 VOLTAGE–CURRENT TWO-PORT PARAMETERS
    2. 4.2 ABCD PARAMETERS
    3. 4.3 IMAGE IMPEDANCE
    4. 4.4 TELEGRAPHER’S EQUATIONS
    5. 4.5 TRANSMISSION LINE EQUATION
    6. 4.6 SMITH CHART
    7. 4.7 TRANSMISSION LINE STUB TRANSFORMER
    8. 4.8 COMMONLY USED TRANSMISSION LINES
    9. 4.9 SCATTERING PARAMETERS
    10. 4.10 INDEFINITE ADMITTANCE MATRIX
    11. 4.11 INDEFINITE SCATTERING MATRIX
    12. 4.12 CONCLUSIONS
  11. CHAPTER FIVE Filter Design and Approximation
    1. 5.1 INTRODUCTION
    2. 5.2 IDEAL AND APPROXIMATE FILTER TYPES
    3. 5.3 TRANSFER FUNCTION AND BASIC FILTER CONCEPTS
    4. 5.4 LADDER NETWORK FILTERS
    5. 5.5 ELLIPTIC FILTER
    6. 5.6 MATCHING BETWEEN UNEQUAL RESISTANCE LEVELS
    7. 5.7 CONCLUSIONS
  12. CHAPTER SIX Transmission Line Transformers
    1. 6.1 INTRODUCTION
    2. 6.2 IDEAL TRANSMISSION LINE TRANSFORMERS
    3. 6.3 TRANSMISSION LINE TRANSFORMER SYNTHESIS
    4. 6.4 ELECTRICALLY LONG TRANSMISSION LINE TRANSFORMERS
    5. 6.5 BALUNS
    6. 6.6 DIVIDERS AND COMBINERS
    7. 6.7 THE 90 ° COUPLER
  13. CHAPTER SEVEN Noise in RF Amplifiers
    1. 7.1 SOURCES OF NOISE
    2. 7.2 THERMAL NOISE
    3. 7.3 SHOT NOISE
    4. 7.4 NOISE CIRCUIT ANALYSIS
    5. 7.5 AMPLIFIER NOISE CHARACTERIZATION
    6. 7.6 NOISE MEASUREMENT
    7. 7.7 NOISY TWO-PORT CIRCUITS
    8. 7.8 TWO-PORT NOISE FACTOR DERIVATION
    9. 7.9 FUKUI NOISE MODEL FOR TRANSISTORS
  14. CHAPTER EIGHT Class A Amplifiers
    1. 8.1 INTRODUCTION
    2. 8.2 DEFINITION OF GAIN [2]
    3. 8.3 TRANSDUCER POWER GAIN OF A TWO-PORT NETWORK
    4. 8.4 TRANSDUCER POWER GAIN USING S PARAMETERS
    5. 8.5 SIMULTANEOUS MATCH FOR MAXIMUM POWER GAIN
    6. 8.6 STABILITY
    7. 8.7 CLASS A POWER AMPLIFIERS
    8. 8.8 POWER COMBINING OF POWER AMPLIFIERS
    9. 8.9 PROPERTIES OF CASCADED AMPLIFIERS
    10. 8.10 AMPLIFIER DESIGN FOR OPTIMUM GAIN AND NOISE
    11. 8.11 CONCLUSION
  15. CHAPTER NINE RF Power Amplifiers
    1. 9.1 TRANSISTOR CONFIGURATIONS
    2. 9.2 CLASS B AMPLIFIER
    3. 9.3 CLASS C AMPLIFIER
    4. 9.4 CLASS C INPUT BIAS VOLTAGE
    5. 9.5 CLASS D POWER AMPLIFIER
    6. 9.6 CLASS E POWER AMPLIFIER
    7. 9.7 CLASS F POWER AMPLIFIER
    8. 9.8 FEED-FORWARD AMPLIFIERS
    9. 9.9 CONCLUSIONS
  16. CHAPTER TEN Oscillators and Harmonic Generators
    1. 10.1 OSCILLATOR FUNDAMENTALS
    2. 10.2 FEEDBACK THEORY
    3. 10.3 TWO-PORT OSCILLATORS WITH EXTERNAL FEEDBACK
    4. 10.4 PRACTICAL OSCILLATOR EXAMPLE
    5. 10.5 MINIMUM REQUIREMENTS OF THE REFLECTION COEFFICIENT
    6. 10.6 COMMON GATE (BASE) OSCILLATORS
    7. 10.7 STABILITY OF AN OSCILLATOR
    8. 10.8 INJECTION-LOCKED OSCILLATORS
    9. 10.9 OSCILLATOR PHASE NOISE
    10. 10.10 HARMONIC GENERATORS
  17. CHAPTER ELEVEN RF Mixers
    1. 11.1 NONLINEAR DEVICE CHARACTERISTICS
    2. 11.2 FIGURES OF MERIT FOR MIXERS
    3. 11.3 SINGLE-ENDED MIXERS
    4. 11.4 SINGLE-BALANCED MIXERS
    5. 11.5 DOUBLE-BALANCED MIXERS
    6. 11.6 DOUBLE-BALANCED TRANSISTOR MIXERS
    7. 11.7 SPURIOUS RESPONSE
    8. 11.8 SINGLE-SIDEBAND NOISE FACTOR AND NOISE TEMPERATURE
    9. 11.9 SPECIAL MIXER APPLICATIONS
    10. 11.10 CONCLUSIONS
  18. CHAPTER TWELVE Phase-Lock Loops
    1. 12.1 INTRODUCTION
    2. 12.2 PLL DESIGN BACKGROUND
    3. 12.3 PLL APPLICATIONS
    4. 12.4 PLL BASICS
    5. 12.5 LOOP DESIGN PRINCIPLES
    6. 12.6 LINEAR ANALYSIS OF THE PLL [5]*
    7. 12.7 LOCKING A PHASE-LOCK LOOP
    8. 12.8 LOOP TYPES
    9. 12.9 NEGATIVE FEEDBACK IN A PLL
    10. 12.10 PLL DESIGN EQUATIONS
    11. 12.11 PHASE DETECTOR TYPES
    12. 12.12 DESIGN EXAMPLES
    13. 12.13 CONCLUSIONS
  19. APPENDIX A Example of a Solenoid Design
  20. APPENDIX B Analytical Spiral Inductor Model
  21. APPENDIX C Double-Tuned Matching Circuit Example
  22. APPENDIX D Two-Port Parameter Conversion
  23. APPENDIX E Termination of a Transistor Port with a Load
  24. APPENDIX F Transistor and Amplifier Formulas
    1. BIPOLAR TRANSISTOR PARAMETERS (BJT)
    2. JUNCTION FIELD-EFFECT TRANSISTOR PARAMETERS (JFET)
    3. METAL–OXIDE SEMICONDUCTOR FIELD-EFFECT TRANSISTOR (MOSFET) PARAMETERS
    4. SMALL-SIGNAL SINGLE-TRANSISTOR AMPLIFIER CONFIGURATIONS
  25. APPENDIX G Transformed Frequency-Domain Measurements Using SPICE
    1. G.1 INTRODUCTION
    2. G.2 FREQUENCY-DOMAIN S PARAMETERS
    3. G.3 TIME-DOMAIN REFLECTOMETRY ANALYSIS
    4. G.4 TIME-DOMAIN IDENTIFICATION OF CIRCUIT ELEMENTS
    5. G.5 MULTIPLE DISCONTINUITIES
    6. G.6 SAMPLE SPICE LIST
    7. G.7 IMPULSE RESPONSE SPICE NET LIST MODIFICATION
    8. Acknowledgment
  26. APPENDIX H Single-Tone Intermodulation Distortion Suppression for Double-Balanced Mixers
  27. Index