Learn R Statistical Application Development from scratch in a clear and pedagogical manner
A self-learning guide for the user who needs statistical tools for understanding uncertainty in computer science data
Essential descriptive statistics, effective data visualization, and efficient model building
Every method explained through real data sets enables clarity and confidence for unforeseen scenarios
In Detail
"R Statistical Application Development by Example Beginner’s Guide" explores statistical concepts and the R software, which are well integrated from the word go. This demarcates the separate learning of theory and applications and hence the title begins with “R Statistical …”. Almost every concept has an R code going with it which exemplifies the strength of R and applications. Thus, the reader first understands the data characteristics, descriptive statistics, and the exploratory attitude which gives the first firm footing of data analysis. Statistical inference and the use of simulation which makes use of the computational power complete the technical footing of statistical methods. Regression modeling, linear, logistic, and CART, builds the essential toolkit which helps the reader complete complex problems in the real world.
The reader will begin with a brief understanding of the nature of data and end with modern and advanced statistical models like CART. Every step is taken with DATA and R code.
The data analysis journey begins with exploratory analysis, which is more than simple descriptive data summaries, and then takes the traditional path up to linear regression modeling, and ends with logistic regression, CART, and spatial statistics.
True to the title R Statistical Application Development by Example Beginner’s Guide, the reader will enjoy the examples and R software.