You are previewing R in a Nutshell, 2nd Edition.

R in a Nutshell, 2nd Edition

Cover of R in a Nutshell, 2nd Edition by Joseph Adler Published by O'Reilly Media, Inc.
  1. R in a Nutshell
  2. Preface
    1. Why I Wrote This Book
    2. When Should You Use R?
    3. What’s New in the Second Edition?
    4. R License Terms
    5. Examples
    6. How This Book Is Organized
    7. Conventions Used in This Book
    8. Using Code Examples
    9. Safari® Books Online
    10. How to Contact Us
    11. Acknowledgments
  3. I. R Basics
    1. 1. Getting and Installing R
      1. R Versions
      2. Getting and Installing Interactive R Binaries
    2. 2. The R User Interface
      1. The R Graphical User Interface
      2. The R Console
      3. Batch Mode
      4. Using R Inside Microsoft Excel
      5. RStudio
      6. Other Ways to Run R
    3. 3. A Short R Tutorial
      1. Basic Operations in R
      2. Functions
      3. Variables
      4. Introduction to Data Structures
      5. Objects and Classes
      6. Models and Formulas
      7. Charts and Graphics
      8. Getting Help
    4. 4. R Packages
      1. An Overview of Packages
      2. Listing Packages in Local Libraries
      3. Loading Packages
      4. Exploring Package Repositories
      5. Installing Packages From Other Repositories
      6. Custom Packages
  4. II. The R Language
    1. 5. An Overview of the R Language
      1. Expressions
      2. Objects
      3. Symbols
      4. Functions
      5. Objects Are Copied in Assignment Statements
      6. Everything in R Is an Object
      7. Special Values
      8. Coercion
      9. The R Interpreter
      10. Seeing How R Works
    2. 6. R Syntax
      1. Constants
      2. Operators
      3. Expressions
      4. Control Structures
      5. Accessing Data Structures
      6. R Code Style Standards
    3. 7. R Objects
      1. Primitive Object Types
      2. Vectors
      3. Lists
      4. Other Objects
      5. Attributes
    4. 8. Symbols and Environments
      1. Symbols
      2. Working with Environments
      3. The Global Environment
      4. Environments and Functions
      5. Exceptions
    5. 9. Functions
      1. The Function Keyword
      2. Arguments
      3. Return Values
      4. Functions as Arguments
      5. Argument Order and Named Arguments
      6. Side Effects
    6. 10. Object-Oriented Programming
      1. Overview of Object-Oriented Programming in R
      2. Object-Oriented Programming in R: S4 Classes
      3. Old-School OOP in R: S3
  5. III. Working with Data
    1. 11. Saving, Loading, and Editing Data
      1. Entering Data Within R
      2. Saving and Loading R Objects
      3. Importing Data from External Files
      4. Exporting Data
      5. Importing Data From Databases
      6. Getting Data from Hadoop
    2. 12. Preparing Data
      1. Combining Data Sets
      2. Transformations
      3. Binning Data
      4. Subsets
      5. Summarizing Functions
      6. Data Cleaning
      7. Finding and Removing Duplicates
      8. Sorting
  6. IV. Data Visualization
    1. 13. Graphics
      1. An Overview of R Graphics
      2. Graphics Devices
      3. Customizing Charts
    2. 14. Lattice Graphics
      1. History
      2. An Overview of the Lattice Package
      3. High-Level Lattice Plotting Functions
      4. Customizing Lattice Graphics
      5. Low-Level Functions
    3. 15. ggplot2
      1. A Short Introduction
      2. The Grammar of Graphics
      3. A More Complex Example: Medicare Data
      4. Quick Plot
      5. Creating Graphics with ggplot2
      6. Learning More
  7. V. Statistics with R
    1. 16. Analyzing Data
      1. Summary Statistics
      2. Correlation and Covariance
      3. Principal Components Analysis
      4. Factor Analysis
      5. Bootstrap Resampling
    2. 17. Probability Distributions
      1. Normal Distribution
      2. Common Distribution-Type Arguments
      3. Distribution Function Families
    3. 18. Statistical Tests
      1. Continuous Data
      2. Discrete Data
    4. 19. Power Tests
      1. Experimental Design Example
      2. t-Test Design
      3. Proportion Test Design
      4. ANOVA Test Design
    5. 20. Regression Models
      1. Example: A Simple Linear Model
      2. Details About the lm Function
      3. Subset Selection and Shrinkage Methods
      4. Nonlinear Models
      5. Survival Models
      6. Smoothing
      7. Machine Learning Algorithms for Regression
    6. 21. Classification Models
      1. Linear Classification Models
      2. Machine Learning Algorithms for Classification
    7. 22. Machine Learning
      1. Market Basket Analysis
      2. Clustering
    8. 23. Time Series Analysis
      1. Autocorrelation Functions
      2. Time Series Models
  8. VI. Additional Topics
    1. 24. Optimizing R Programs
      1. Measuring R Program Performance
      2. Optimizing Your R Code
      3. Other Ways to Speed Up R
    2. 25. Bioconductor
      1. An Example
      2. Key Bioconductor Packages
      3. Data Structures
      4. Where to Go Next
    3. 26. R and Hadoop
      1. R and Hadoop
      2. Other Packages for Parallel Computation with R
      3. Where to Learn More
  9. A. R Reference
    1. base
      1. Functions
      2. Data Sets
    2. boot
      1. Functions
      2. Data Sets
    3. class
      1. Functions
    4. cluster
      1. Functions
      2. Data Sets
    5. codetools
    6. foreign
      1. Functions
    7. grDevices
      1. Functions
      2. Data Sets
    8. graphics
      1. Functions
    9. grid
    10. KernSmooth
      1. Functions
    11. lattice
      1. Functions
      2. Data Sets
    12. MASS
      1. Functions
      2. Data Sets
    13. methods
      1. Functions
    14. mgcv
    15. nlme
    16. nnet
      1. Functions
    17. rpart
      1. Functions
      2. Data Sets
    18. spatial
      1. Functions
    19. splines
      1. Functions
    20. stats
      1. Functions
      2. Data Set
    21. stats4
      1. Functions
    22. survival
      1. Functions
      2. Data Sets
    23. tcltk
    24. tools
      1. Functions
      2. Data Sets
    25. utils
      1. Functions
  10. Bibliography
  11. Index
  12. About the Author
  13. Colophon
  14. Copyright
O'Reilly logo

Continuous Data

This section describes tests that apply to continuous random variables. Many important measurements fall into this category, such as times, dollar amounts, and chemical concentrations.

Normal Distribution-Based Tests

We’ll start off by showing how to use some common statistical tests that assume the underlying data is normally distributed. Normal distributions occur frequently in nature, so this is often a good assumption.[50]

Comparing means

Suppose that you designed an experiment to show that some effect is true. You have collected some data and now want to know if the data proves your hypothesis. One common question is to ask if the mean of the experimental data is close to what the experimenter expected; this is called the null hypothesis. Alternately, the experimenter may calculate the probability that an alternative hypothesis was true. Specifically, suppose that you have a set of observations x1, x2, ..., xn with experimental mean μ and want to know if the experimental mean is different from the null hypothesis mean μ0. Furthermore, assume that the observations are normally distributed. To test the validity of the hypothesis, you can use a t-test. In R, you would use the function t.test:

## Default S3 method:
t.test(x, y = NULL,
       alternative = c("two.sided", "less", "greater"),
       mu = 0, paired = FALSE, var.equal = FALSE,
       conf.level = 0.95, ...)

Here is a description of the arguments to the t.test function.

ArgumentDescriptionDefault
xA numeric vector of data values. ...

The best content for your career. Discover unlimited learning on demand for around $1/day.