O'Reilly logo

R: Data Analysis and Visualization by Ágnes Vidovics-Dancs, Kata Váradi, Tamás Vadász, Ágnes Tuza, Balázs Árpád Szucs, Julia Molnár, Péter Medvegyev, Balázs Márkus, István Margitai, Péter Juhász, Dániel Havran, Gergely Gabler, Barbara Dömötör, Gergely Daróczi, Ádám Banai, Milán Badics, Ferenc Illés, Edina Berlinger, Bater Makhabel, Hrishi V. Mittal, Jaynal Abedin, Brett Lantz, Tony Fischetti

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Analysis with unsanitized data

Very often, there will be errors or mistakes in data that can severely complicate analyses—especially with public data or data outside of your organization. For example, say there is a stray comma or punctuation mark in a column that was supposed to be numeric. If we aren't careful, R will read this column as character, and subsequent analysis may, in the best case scenario, fail; it is also possible, however, that our analysis will silently chug along, and return an unexpected result. This will happen, for example, if we try to perform linear regression using the punctuation-containing-but-otherwise-numeric column as a predictor, which will compel R to convert it into a factor thinking that it is a categorical variable. ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required