O'Reilly logo

R: Data Analysis and Visualization by Ágnes Vidovics-Dancs, Kata Váradi, Tamás Vadász, Ágnes Tuza, Balázs Árpád Szucs, Julia Molnár, Péter Medvegyev, Balázs Márkus, István Margitai, Péter Juhász, Dániel Havran, Gergely Gabler, Barbara Dömötör, Gergely Daróczi, Ádám Banai, Milán Badics, Ferenc Illés, Edina Berlinger, Bater Makhabel, Hrishi V. Mittal, Jaynal Abedin, Brett Lantz, Tony Fischetti

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Fitting distributions the Bayesian way

In this next example, we are going to be fitting a normal distribution to the precipitation dataset that we worked with in the previous chapter. We will wrap up with Bayesian analogue to the one sample t-test.

The results we want from this analysis are credible values of the true population mean of the precipitation data. Refer back to the previous chapter to recall that the sample mean was 34.89. In addition, we will also be determining credible values of the standard deviation of the precipitation data. Since we are interested in the credible values of two parameters, our posterior distribution is a joint distribution.

Our model will look a little differently now:

the.model <- " model { mu ~ dunif(0, 60) # ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required