You are previewing Python for Unix and Linux System Administration.

Python for Unix and Linux System Administration

Cover of Python for Unix and Linux System Administration by Noah Gift... Published by O'Reilly Media, Inc.
  1. Copyright
  2. Foreword
  3. Preface
    1. P2.1. Conventions Used in This Book
    2. P2.2. Using Code Examples
    3. P2.3. Safari® Books Online
    4. P2.4. How to Contact Us
    5. P2.5. Acknowledgments
      1. P2.5.1. Noah’s Acknowledgments
      2. P2.5.2. Jeremy’s Acknowledgments
  4. 1. Introduction
    1. 1.1. Why Python?
    2. 1.2. Motivation
    3. 1.3. The Basics
    4. 1.4. Executing Statements in Python
      1. 1.4.1. Summary
    5. 1.5. Using Functions in Python
    6. 1.6. Reusing Code with the Import Statement
  5. 2. IPython
    1. 2.1. Installing IPython
    2. 2.2. Basic Concepts
      1. 2.2.1. Interacting with IPython
      2. 2.2.2. Tab Completion
      3. 2.2.3. Magic Edit
      4. 2.2.4. Configuring IPython
    3. 2.3. Help with Magic Functions
    4. 2.4. Unix Shell
      1. 2.4.1. alias
      2. 2.4.2. Shell Execute
      3. 2.4.3. rehash
      4. 2.4.4. rehashx
      5. 2.4.5. cd
      6. 2.4.6. bookmark
      7. 2.4.7. dhist
      8. 2.4.8. pwd
      9. 2.4.9. Variable Expansion
      10. 2.4.10. String Processing
      11. 2.4.11. sh Profile
    5. 2.5. Information Gathering
      1. 2.5.1. page
      2. 2.5.2. pdef
      3. 2.5.3. pdoc
      4. 2.5.4. pfile
      5. 2.5.5. pinfo
      6. 2.5.6. psource
      7. 2.5.7. psearch
      8. 2.5.8. who
      9. 2.5.9. who_ls
      10. 2.5.10. whos
      11. 2.5.11. History
    6. 2.6. Automation and Shortcuts
      1. 2.6.1. alias
      2. 2.6.2. macro
      3. 2.6.3. store
      4. 2.6.4. reset
      5. 2.6.5. run
      6. 2.6.6. save
      7. 2.6.7. rep
    7. 2.7. Summary
  6. 3. Text
    1. 3.1. Python Built-ins and Modules
      1. 3.1.1. str
      2. 3.1.2. re
      3. 3.1.3. Apache Config File Hacking
      4. 3.1.4. Working with Files
      5. 3.1.5. Standard Input and Output
      6. 3.1.6. StringIO
      7. 3.1.7. urllib
    2. 3.2. Log Parsing
    3. 3.3. ElementTree
    4. 3.4. Summary
  7. 4. Documentation and Reporting
    1. 4.1. Automated Information Gathering
      1. 4.1.1. Receiving Email
    2. 4.2. Manual Information Gathering
    3. 4.3. Information Formatting
      1. 4.3.1. Graphical Images
      2. 4.3.2. PDFs
    4. 4.4. Information Distribution
      1. 4.4.1. Sending Email
      2. 4.4.2. Trac
    5. 4.5. Summary
  8. 5. Networking
    1. 5.1. Network Clients
      1. 5.1.1. socket
      2. 5.1.2. httplib
      3. 5.1.3. ftplib
      4. 5.1.4. urllib
      5. 5.1.5. urllib2
    2. 5.2. Remote Procedure Call Facilities
      1. 5.2.1. XML-RPC
      2. 5.2.2. Pyro
    3. 5.3. SSH
    4. 5.4. Twisted
    5. 5.5. Scapy
    6. 5.6. Creating Scripts with Scapy
  9. 6. Data
    1. 6.1. Introduction
    2. 6.2. Using the OS Module to Interact with Data
    3. 6.3. Copying, Moving, Renaming, and Deleting Data
    4. 6.4. Working with Paths, Directories, and Files
    5. 6.5. Comparing Data
      1. 6.5.1. Using the filecmp Module
    6. 6.6. Merging Data
      1. 6.6.1. MD5 Checksum Comparisons
    7. 6.7. Pattern Matching Files and Directories
    8. 6.8. Wrapping Up rsync
    9. 6.9. Metadata: Data About Data
    10. 6.10. Archiving, Compressing, Imaging, and Restoring
    11. 6.11. Using tarfile Module to Create TAR Archives
    12. 6.12. Using a tarfile Module to Examine the Contents of TAR Files
  10. 7. SNMP
    1. 7.1. Introduction
    2. 7.2. Brief Introduction to SNMP
      1. 7.2.1. SNMP Overview
      2. 7.2.2. SNMP Installation and Configuration
    3. 7.3. IPython and Net-SNMP
    4. 7.4. Discovering a Data Center
    5. 7.5. Retrieving Multiple-Values with Net-SNMP
      1. 7.5.1. Finding Memory
    6. 7.6. Creating Hybrid SNMP Tools
    7. 7.7. Extending Net-SNMP
    8. 7.8. SNMP Device Control
    9. 7.9. Enterprise SNMP Integration with Zenoss
      1. 7.9.1. Zenoss API
  11. 8. OS Soup
    1. 8.1. Introduction
    2. 8.2. Cross-Platform Unix Programming in Python
      1. 8.2.1. Using SSH Keys, NFS-Mounted Source Directory, and Cross-Platform Python to Manage Systems
      2. 8.2.2. Creating a Cross-Platform, Systems Management Tool
      3. 8.2.3. Creating a Cross-Platform Build Network
    3. 8.3. PyInotify
    4. 8.4. OS X
      1. 8.4.1. Scripting DSCL or Directory Services Utility
      2. 8.4.2. OS X Scripting APIs
      3. 8.4.3. Automatically Re-Imaging Machines
      4. 8.4.4. Managing Plist Files from Python
    5. 8.5. Red Hat Linux Systems Administration
    6. 8.6. Ubuntu Administration
    7. 8.7. Solaris Systems Administration
    8. 8.8. Virtualization
      1. 8.8.1. VMware
    9. 8.9. Cloud Computing
      1. 8.9.1. Amazon Web Services with Boto
      2. 8.9.2. Google App Engine
    10. 8.10. Using Zenoss to Manage Windows Servers from Linux
  12. 9. Package Management
    1. 9.1. Introduction
    2. 9.2. Setuptools and Python Eggs
    3. 9.3. Using easy_install
    4. 9.4. easy_install Advanced Features
      1. 9.4.1. Search for Packages on a Web Page
      2. 9.4.2. Install Source Distribution from URL
      3. 9.4.3. Install Egg Located on Local or Network Filesystem
      4. 9.4.4. Upgrading Packages
      5. 9.4.5. Install an Unpacked Source Distribution in Current Working Directory
      6. 9.4.6. Extract Source Distribution to Specified Directory
      7. 9.4.7. Change Active Version of Package
      8. 9.4.8. Changing Standalone .py File into egg
      9. 9.4.9. Authenticating to a Password Protected Site
      10. 9.4.10. Using Configuration Files
      11. 9.4.11. Easy Install Advanced Features Summary
    5. 9.5. Creating Eggs
    6. 9.6. Entry Points and Console Scripts
    7. 9.7. Registering a Package with the Python Package Index
      1. 9.7.1. Where Can I Learn More About …
    8. 9.8. Distutils
    9. 9.9. Buildout
    10. 9.10. Using Buildout
    11. 9.11. Developing with Buildout
    12. 9.12. virtualenv
      1. 9.12.1. Creating a Custom Bootstrapped Virtual Environment
    13. 9.13. EPM Package Manager
      1. 9.13.1. EPM Package Manager Requirements and Installation
      2. 9.13.2. Creating a Hello World Command-Line Tool to Distribute
      3. 9.13.3. Creating Platform-Specific Packages with EPM
      4. 9.13.4. Making the Package
      5. 9.13.5. EPM Summary: It Really Is That Easy
  13. 10. Processes and Concurrency
    1. 10.1. Introduction
    2. 10.2. Subprocess
      1. 10.2.1. Using Return Codes with Subprocess
    3. 10.3. Using Supervisor to Manage Processes
    4. 10.4. Using Screen to Manage Processes
    5. 10.5. Threads in Python
      1. 10.5.1. Timed Delay of Threads with threading.Timer
      2. 10.5.2. Threaded Event Handler
    6. 10.6. Processes
    7. 10.7. Processing Module
    8. 10.8. Scheduling Python Processes
    9. 10.9. daemonizer
    10. 10.10. Summary
  14. 11. Building GUIs
    1. 11.1. GUI Building Theory
    2. 11.2. Building a Simple PyGTK App
    3. 11.3. Building an Apache Log Viewer Using PyGTK
    4. 11.4. Building an Apache Log Viewer Using Curses
    5. 11.5. Web Applications
    6. 11.6. Django
      1. 11.6.1. Apache Log Viewer Application
      2. 11.6.2. Simple Database Application
    7. 11.7. Conclusion
  15. 12. Data Persistence
    1. 12.1. Simple Serialization
      1. 12.1.1. Pickle
      2. 12.1.2. cPickle
      3. 12.1.3. shelve
      4. 12.1.4. YAML
      5. 12.1.5. ZODB
    2. 12.2. Relational Serialization
      1. 12.2.1. SQLite
      2. 12.2.2. Storm ORM
      3. 12.2.3. SQLAlchemy ORM
    3. 12.3. Summary
  16. 13. Command Line
    1. 13.1. Introduction
    2. 13.2. Basic Standard Input Usage
    3. 13.3. Introduction to Optparse
    4. 13.4. Simple Optparse Usage Patterns
      1. 13.4.1. No Options Usage Pattern
      2. 13.4.2. True/False Usage Pattern
      3. 13.4.3. Counting Options Usage Pattern
      4. 13.4.4. Choices Usage Pattern
      5. 13.4.5. Option with Multiple Arguments Usage Pattern
    5. 13.5. Unix Mashups: Integrating Shell Commands into Python Command-Line Tools
      1. 13.5.1. Kudzu Usage Pattern: Wrapping a Tool in Python
      2. 13.5.2. Hybrid Kudzu Design Pattern: Wrapping a Tool in Python, and Then Changing the Behavior
      3. 13.5.3. Hybrid Kudzu Design Pattern: Wrapping a Unix Tool in Python to Spawn Processes
    6. 13.6. Integrating Configuration Files
    7. 13.7. Summary
  17. 14. Pragmatic Examples
    1. 14.1. Managing DNS with Python
    2. 14.2. Using LDAP with OpenLDAP, Active Directory, and More with Python
      1. 14.2.1. Importing an LDIF File
    3. 14.3. Apache Log Reporting
    4. 14.4. FTP Mirror
  18. A. Callbacks
  19. Index
  20. B. Colophon
O'Reilly logo

Chapter 5. Networking

Networking often refers to connecting multiple computers together for the purpose of allowing some communication among them. But, for our purposes, we are less interested in allowing computers to communicate with one another and more interested in allowing processes to communicate with one another. Whether the processes are on the same computer or different computers is irrelevant for the techniques that we’re going to show.

This chapter will focus on writing Python programs that connect to other processes using the standard socket library (as well as libraries built on top of socket) and then interacting with those other processes.

Network Clients

While servers sit and wait for a client to connect to them, clients initiate connections. The Python Standard Library contains implementations of many used network clients. This section will discuss some of the more common and frequently useful clients.

socket

The socket module provides a Python interface to your operating system’s socket implementation. This means that you can do whatever can be done to or with sockets, using Python. In case you have never done any network programming before, this chapter does provide a brief overview of networking. It should give you a flavor of what kinds of things you can do with the Python networking libraries.

The socket module provides the factory function, socket(). The socket() function, in turn, returns a socket object. While there are a number of arguments to pass to socket() ...

The best content for your career. Discover unlimited learning on demand for around $1/day.