You are previewing Professional NoSQL.

Professional NoSQL

Cover of Professional NoSQL by Shashank Tiwari Published by Wrox
  1. Cover
  2. Contents
  3. Introduction
  4. Part I: Getting Started
    1. Chapter 1: NoSQL: What It Is and Why You Need it
      1. Definition and Introduction
      2. Sorted Ordered Column-Oriented Stores
      3. Key/Value Stores
      4. Document Databases
      5. Graph Databases
      6. Summary
    2. Chapter 2: Hello NoSQL: Getting Initial Hands-on Experience
      1. First Impressions — Examining Two Simple Examples
      2. Working with Language Bindings
      3. Summary
    3. Chapter 3: Interfacing and Interacting with NoSQL
      1. If No SQL, Then What?
      2. Language Bindings for NoSQL Data Stores
      3. Summary
  5. Part II: Learning the NoSQL Basics
    1. Chapter 4: Understanding the Storage Architecture
      1. Working with Column-Oriented Databases
      2. HBase Distributed Storage Architecture
      3. Document Store Internals
      4. Understanding Key/Value Stores in Memcached and Redis
      5. Eventually Consistent Non-relational Databases
      6. Summary
    2. Chapter 5: Performing CRUD Operations
      1. Creating Records
      2. Accessing Data
      3. Updating and Deleting Data
      4. Summary
    3. Chapter 6: Querying NoSQL Stores
      1. Similarities Between SQL and MongoDB Query Features
      2. Accessing Data from Column-Oriented Databases Like HBase
      3. Querying Redis Data Stores
      4. Summary
    4. Chapter 7: Modifying Data Stores and Managing Evolution
      1. Changing Document Databases
      2. Schema Evolution in Column-Oriented Databases
      3. HBase Data Import and Export
      4. Data Evolution in Key/Value Stores
      5. Summary
    5. Chapter 8: Indexing and Ordering Data Sets
      1. Essential Concepts Behind a Database Index
      2. Indexing and Ordering in MongoDB
      3. Creating and Using Indexes in MongoDB
      4. Indexing and Ordering in CouchDB
      5. Indexing in Apache Cassandra
      6. Summary
    6. Chapter 9: Managing Transactions and Data Integrity
      1. RDBMS AND ACID
      2. Distributed ACID Systems
      3. Upholding CAP
      4. Consistency Implementations in a Few NoSQL Products
      5. Summary
  6. Part III: Gaining Proficiency with NoSQL
    1. Chapter 10: Using NoSQL in the Cloud
      1. Google App Engine Data Store
      2. Amazon SimpleDB
      3. Summary
    2. Chapter 11: Scalable Parallel Processing with MapReduce
      1. Understanding MapReduce
      2. MapReduce with HBase
      3. MapReduce Possibilities and Apache Mahout
      4. Summary
    3. Chapter 12: Analyzing Big Data with Hive
      1. Hive Basics
      2. Back to Movie Ratings
      3. Good Old SQL
      4. JOIN(s) in Hive QL
      5. Summary
    4. Chapter 13: Surveying Database Internals
      1. MongoDB Internals
      2. Membase Architecture
      3. Hypertable Under the Hood
      4. Apache Cassandra
      5. Berkeley DB
      6. Summary
  7. Part IV: Mastering NoSQL
    1. Chapter 14: Choosing Among NoSQL Flavors
      1. Comparing NoSQL Products
      2. Benchmarking Performance
      3. Contextual Comparison
      4. Summary
    2. Chapter 15: Coexistence
      1. Using MySQL as a NoSQL Solution
      2. Mostly Immutable Data Stores
      3. Web Frameworks and NoSQL
      4. Migrating from RDBMS to NoSQL
      5. Summary
    3. Chapter 16: Performance Tuning
      1. Goals of Parallel Algorithms
      2. Influencing Equations
      3. Partitioning
      4. Scheduling in Heterogeneous Environments
      5. Additional MapReduce Tuning
      6. HBase Coprocessors
      7. Leveraging Bloom Filters
      8. Summary
    4. Chapter 17: Tools and Utilities
      1. RRDTool
      2. Nagios
      3. Scribe
      4. Flume
      5. Chukwa
      6. Pig
      7. Nodetool
      8. OpenTSDB
      9. Solandra
      10. Hummingbird and C5t
      11. GeoCouch
      12. Alchemy Database
      13. Webdis
      14. Summary
  8. Appendix: Installation and Setup Instructions
O'Reilly logo

Chapter 16

Performance Tuning

WHAT’S IN THIS CHAPTER?

  • Understanding the factors that affect parallel scalable applications
  • Optimizing scalable processing, especially when it leverages the MapReduce model for processing
  • Presenting a set of best practices for parallel processing
  • Illustrating a few Hadoop performance tuning tips

Today, much of the big data analysis in the world of NoSQL rests on the shoulders of the MapReduce model of processing. Hadoop is built on it and each NoSQL product supporting huge data sizes leverages it. This chapter is a first look into optimizing scalable applications and tuning the way MapReduce-style processing works on large data sets. By no means does the chapter provide a prescriptive solution. Instead, it provides a few important concepts and good practices to bear in mind when optimizing a scalable parallel application. Each optimization problem is unique to its requirements and context and so providing one universally applicable general solution is probably not feasible.

GOALS OF PARALLEL ALGORITHMS

MapReduce makes scalable parallel processing easier than it had been in the past. By adhering to a model where data is not shared between parallel threads or processes, MapReduce creates a bottleneck-free way of scaling out as workloads increase. The underlying goal at all times is to reduce latency and increase throughput.

The Implications of Reducing Latency

Reducing latency simply means reducing the execution time of a program. The faster a program ...

The best content for your career. Discover unlimited learning on demand for around $1/day.