You are previewing Professional NoSQL.

Professional NoSQL

Cover of Professional NoSQL by Shashank Tiwari Published by Wrox
  1. Cover
  2. Contents
  3. Introduction
  4. Part I: Getting Started
    1. Chapter 1: NoSQL: What It Is and Why You Need it
      1. Definition and Introduction
      2. Sorted Ordered Column-Oriented Stores
      3. Key/Value Stores
      4. Document Databases
      5. Graph Databases
      6. Summary
    2. Chapter 2: Hello NoSQL: Getting Initial Hands-on Experience
      1. First Impressions — Examining Two Simple Examples
      2. Working with Language Bindings
      3. Summary
    3. Chapter 3: Interfacing and Interacting with NoSQL
      1. If No SQL, Then What?
      2. Language Bindings for NoSQL Data Stores
      3. Summary
  5. Part II: Learning the NoSQL Basics
    1. Chapter 4: Understanding the Storage Architecture
      1. Working with Column-Oriented Databases
      2. HBase Distributed Storage Architecture
      3. Document Store Internals
      4. Understanding Key/Value Stores in Memcached and Redis
      5. Eventually Consistent Non-relational Databases
      6. Summary
    2. Chapter 5: Performing CRUD Operations
      1. Creating Records
      2. Accessing Data
      3. Updating and Deleting Data
      4. Summary
    3. Chapter 6: Querying NoSQL Stores
      1. Similarities Between SQL and MongoDB Query Features
      2. Accessing Data from Column-Oriented Databases Like HBase
      3. Querying Redis Data Stores
      4. Summary
    4. Chapter 7: Modifying Data Stores and Managing Evolution
      1. Changing Document Databases
      2. Schema Evolution in Column-Oriented Databases
      3. HBase Data Import and Export
      4. Data Evolution in Key/Value Stores
      5. Summary
    5. Chapter 8: Indexing and Ordering Data Sets
      1. Essential Concepts Behind a Database Index
      2. Indexing and Ordering in MongoDB
      3. Creating and Using Indexes in MongoDB
      4. Indexing and Ordering in CouchDB
      5. Indexing in Apache Cassandra
      6. Summary
    6. Chapter 9: Managing Transactions and Data Integrity
      2. Distributed ACID Systems
      3. Upholding CAP
      4. Consistency Implementations in a Few NoSQL Products
      5. Summary
  6. Part III: Gaining Proficiency with NoSQL
    1. Chapter 10: Using NoSQL in the Cloud
      1. Google App Engine Data Store
      2. Amazon SimpleDB
      3. Summary
    2. Chapter 11: Scalable Parallel Processing with MapReduce
      1. Understanding MapReduce
      2. MapReduce with HBase
      3. MapReduce Possibilities and Apache Mahout
      4. Summary
    3. Chapter 12: Analyzing Big Data with Hive
      1. Hive Basics
      2. Back to Movie Ratings
      3. Good Old SQL
      4. JOIN(s) in Hive QL
      5. Summary
    4. Chapter 13: Surveying Database Internals
      1. MongoDB Internals
      2. Membase Architecture
      3. Hypertable Under the Hood
      4. Apache Cassandra
      5. Berkeley DB
      6. Summary
  7. Part IV: Mastering NoSQL
    1. Chapter 14: Choosing Among NoSQL Flavors
      1. Comparing NoSQL Products
      2. Benchmarking Performance
      3. Contextual Comparison
      4. Summary
    2. Chapter 15: Coexistence
      1. Using MySQL as a NoSQL Solution
      2. Mostly Immutable Data Stores
      3. Web Frameworks and NoSQL
      4. Migrating from RDBMS to NoSQL
      5. Summary
    3. Chapter 16: Performance Tuning
      1. Goals of Parallel Algorithms
      2. Influencing Equations
      3. Partitioning
      4. Scheduling in Heterogeneous Environments
      5. Additional MapReduce Tuning
      6. HBase Coprocessors
      7. Leveraging Bloom Filters
      8. Summary
    4. Chapter 17: Tools and Utilities
      1. RRDTool
      2. Nagios
      3. Scribe
      4. Flume
      5. Chukwa
      6. Pig
      7. Nodetool
      8. OpenTSDB
      9. Solandra
      10. Hummingbird and C5t
      11. GeoCouch
      12. Alchemy Database
      13. Webdis
      14. Summary
  8. Appendix: Installation and Setup Instructions

Chapter 15



  • Getting ready for polyglot persistence
  • Understanding the database technologies suitable for immutable data sets
  • Choosing the right database to facilitate ease of application development
  • Using both RDBMS and NoSQL products together

The emergence of NoSQL and the growing excitement around it is making developers wonder if NoSQL options are a replacement to RDBMS. This has led some to claim that RDBMS is dead and that NoSQL is the next predominant database technology. It has also spurred opposing reactions where arguments are being put forward to prove that NoSQL is a “flash in the pan.” The truth is far removed from either of those radical claims. NoSQL and RDBMS are both important and have their place. Peaceful coexistence of the two technologies is reality. Plurality in technology has always been the norm and polyglot persistence is the present and the future. This chapter explains a few cases and the process required to get ready for polyglot persistence.

In the first situation, I explore a case of leveraging the NoSQL ideology within a popular open-source RDBMS product, MySQL. Subsequently, I explore the database requirements for immutable data sets and in the domain of data warehousing and business intelligence. I also present the situations where the choice of an appropriate database technology makes the task of application development easier.


So far, this book has treated RDBMS and NoSQL as two ...

The best content for your career. Discover unlimited learning on demand for around $1/day.