O'Reilly logo

Problems and Solutions in Mathematical Finance: Stochastic Calculus, Volume I by Eric Chin, Sverrir Olafsson, Dian Nel

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Chapter 3Stochastic Differential Equations

A stochastic differential equation (SDE) is a differential equation in which one or more of the terms has a random component. Within the context of mathematical finance, SDEs are frequently used to model diverse phenomena such as stock prices, interest rates or volatilities to name but a few. Typically, SDEs have continuous paths with both random and non-random components and to drive the random component of the model they usually incorporate a Wiener process. To enrich the model further, other types of random fluctuations are also employed in conjunction with the Wiener process, such as the Poisson process when modelling discontinuous jumps. In this chapter we will concentrate solely on SDEs having only a Wiener process, whilst in Chapter 5 we will discuss SDEs incorporating both Poisson and Wiener processes.

3.1 Introduction

To begin with, a one-dimensional stochastic differential equation can be described as

equation

where c03-math-001 is a standard Wiener process, c03-math-002 is defined as the drift and c03-math-003 the volatility. Many financial models can be written in this form, ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required