REFERENCES

1. T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, Berlin, Heidelberg, and New York, 1976.

2. E. Artin, Galois Theory, University of Notre Dame, Notre Dame, Indiana, 1959.

3. A. Baker, Linear forms in the logarithms of algebraic numbers I, Mathematika 13 (1966), pp. 204–216.

4. W. E. H. Berwick, Modular invariants expressible in terms of quadratic and cubic irrationalities, Proc. Lon. Math. Soc. 28 (1927), pp. 53–69.

5. K. R. Biermann, E. Schuhmann, H. Wussing and O. Neumann, Mathematisches Tagebuch 1796–1814 von Carl Friedrich Gauss, 3rd edition, Ostwalds Klassiker 256, Leipzig, 1981.

6. B. J. Birch, Diophantine analysis and modular functions, in Algebraic Geometry, Papers Presented at the Bombay Colloquium, 1968, Oxford University Press, London, 1969, pp. 35–42.

7. B. J. Birch, Weber's class invariants, Mathematika 16 (1969), pp. 283–294.

8. Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York, 1966.

9. J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, New York, 1987.

10. W. E. Briggs, An elementary proof of a theorem about the representations of primes by quadratic forms, Canadian J. Math. 6 (1954), pp. 353–363.

11. G. Bruckner, Charakterisierung der galoisschen Zahlkörper, deren zerlegte Primzahlen durch binäre quadratische Formen gegeben sind, Math. Nachr. 32 (1966), pp. 317–326.

12. D. A. Buell, Class Groups of Quadratic Fields I, II, Math. Comp. 30 (1976), pp. 610–623 and 48 (1987), pp. 85–93. ...

Get Primes of the Form x2+ny2: Fermat, Class Field Theory, and Complex Multiplication now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.