Foreword

Predictive Control of Power Converters and Electrical Drives is an essential work on modern methodology that has the potential to advance the performance of future energy processing and control systems. The main features of modern power electronic converters such as high efficiency, low size and weight, fast operation and high power densities are achieved through the use of the so-called switch mode operation, in which power semiconductor devices are controlled in ON/OFF fashion (operation in the active region is eliminated). This leads to different types of pulse width modulation (PWM), which is the basic energy processing technique used in power electronic systems. The PWM block not only controls but also linearizes power converters, thus it can be considered as a linear power amplifier (actuator). Therefore, power converter and drive systems classically are controlled in cascaded multi-loop systems with PI regulators.

Model-based predictive control (MPC) offers quite a different approach to energy processing, considering a power converter as a discontinuous and nonlinear actuator. In the MPC system the control action is realized in a single controller by on-line selection from all possible states, calculated in the discrete-time predictive model only as the one which minimizes the cost function. Therefore, by appropriate cost function formulation it allows larger flexibility and also achieves the optimization of several important parameters like number of switchings, ...

Get Predictive Control of Power Converters and Electrical Drives now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.