O'Reilly logo

Practical Data Analysis - Second Edition by Dr. Sampath Kumar, Hector Cuesta

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Chapter 8. Working with Support Vector Machines

The Support Vector Machine (SVM) is a powerful classification technique based on Kernels, such as the Kernel Ridge Regression (KRR) algorithm seen in the previous chapter. We often deal with sparse datasets or with data that is not good enough to make a good prediction or classification. In such cases, we may use a technique that creates new values from the original dataset to help in the accuracy of the algorithm; this new data is called synthetic. Due to their efficiency, using Kernels is one of the most common methods to make synthetic data. In this chapter, we will provide you with an easy way to get acceptable results using SVM. We will perform a dimensionality reduction of the dataset, and ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required