Power Vacuum Tubes Handbook, 3rd Edition

Book description

Providing examples of applications, Power Vacuum Tubes Handbook, Third Edition examines the underlying technology of each type of power vacuum tube device in common use today. The author presents basic principles, reports on new development efforts, and discusses implementation and maintenance considerations. Supporting mathematical equations and extensive technical illustrations and schematic diagrams help readers understand the material.

Translate Principles into Specific Applications

This one-stop reference is a hands-on guide for engineering personnel involved in the design, specification, installation, and maintenance of high-power equipment utilizing vacuum tubes. It offers a comprehensive look at the important area of high-frequency/high-power applications of microwave power devices, making it possible for general principles to be translated into specific applications. Coverage includes power grid tubes—triodes, tetrodes, and pentodes—as well as microwave power tubes such as klystrons, traveling wave tubes, gyrotrons, and other high-frequency devices. These vacuum tubes are used in applications from radio broadcasting to television, radar, satellite communications, and more.

Explore a Wide Variety of Methods in Power Vacuum Tube Design

This third edition includes updates on vacuum tube technology, devices, applications, design methods, and modulation methods. It also expands its scope to cover properties of materials and RF system maintenance and troubleshooting. Explaining difficult concepts and processes clearly, this handbook guides readers in the design and selection of a power vacuum tube-based system.

What’s New in This Edition

  • Includes two new chapters on properties of materials and RF system maintenance and troubleshooting
  • Contains updates and additions in most chapters
  • Identifies key applications for commercial and scientific research
  • Examines the frontiers of materials science directly impacting construction, reliability, and performance
  • Reviews methods of power tube design for more efficient, longer-lasting tubes
  • Features updated illustrations throughout to clarify and explain fundamental principles and implementation considerations

Table of contents

  1. Cover
  2. Title Page
  3. Copyright
  4. Contents
  5. Preface
  6. Acknowledgment
  7. Author
  8. 1 Power Vacuum Tube Applications
    1. 1.1 Introduction
    2. 1.2 Vacuum Tube Development
      1. 1.2.1 Pioneer Developers
        1. 1.2.1.1 Radio Central
        2. 1.2.1.2 WLW: The Nation's Station
        3. 1.2.1.3 UHF: A New Technical Challenge
        4. 1.2.1.4 Birth of the Klystron
        5. 1.2.1.5 Nuclear Magnetic Resonance
      2. 1.2.2 Transistor Is Born
      3. 1.2.3 Satellite Technology
      4. 1.2.4 Standardization
      5. 1.2.5 Transmission Systems
    3. 1.3 Vacuum Tube Applications
      1. 1.3.1 Market Overview
    4. 1.4 Electromagnetic Radiation Spectrum
      1. 1.4.1 Low Frequency: 30–300 kHz
      2. 1.4.2 Medium Frequency: 300 kHz–3 MHz
      3. 1.4.3 High Frequency: 3–30 MHz
      4. 1.4.4 Very High Frequency: 30–300 MHz
      5. 1.4.5 Ultrahigh Frequency: 300 MHz–3 GHz
      6. 1.4.6 Superhigh Frequency: 3–30 GHz
  9. 2 Modulation Systems and Characteristics
    1. 2.1 Introduction
    2. 2.2 Modulation Systems
      1. 2.2.1 Principles of Resonance
        1. 2.2.1.1 Series Resonant Circuits
        2. 2.2.1.2 Parallel Resonant Circuits
        3. 2.2.1.3 Cavity Resonators
      2. 2.2.2 Frequency Sources
        1. 2.2.2.1 Frequency Stabilization
        2. 2.2.2.2 Equivalent Circuit of a Quartz Resonator
        3. 2.2.2.3 Temperature Compensation
        4. 2.2.2.4 Stress Compensation
        5. 2.2.2.5 Aging Effects
    3. 2.3 Operating Class
      1. 2.3.1 Operating Efficiency
      2. 2.3.2 Broadband Amplifier Design
        1. 2.3.2.1 Stagger Tuning
        2. 2.3.2.2 Matching Circuits
        3. 2.3.2.3 Power Combining
    4. 2.4 Thermal and Circuit Noise
      1. 2.4.1 Thermal Noise
      2. 2.4.2 Noise in Systems of Cascaded Stages
    5. 2.5 Amplitude Modulation
      1. 2.5.1 High-Level AM Modulation
      2. 2.5.2 Vestigial-Sideband Amplitude Modulation
      3. 2.5.3 Single-Sideband Amplitude Modulation
      4. 2.5.4 Quadrature Amplitude Modulation
    6. 2.6 Frequency Modulation
      1. 2.6.1 Modulation Index
      2. 2.6.2 Phase Modulation
      3. 2.6.3 Modifying FM Waves
      4. 2.6.4 Preemphasis and De-Emphasis
      5. 2.6.5 Modulation Circuits
        1. 2.6.5.1 Direct-FM Modulator
        2. 2.6.5.2 VCO Direct-FM Modulator
      6. 2.6.6 FM Power Amplifiers
    7. 2.7 Pulse Modulation
      1. 2.7.1 Digital Modulation Systems
      2. 2.7.2 Pulse Amplitude Modulation
      3. 2.7.3 Pulse Time Modulation
      4. 2.7.4 Pulse Code Modulation
      5. 2.7.5 Delta Modulation
      6. 2.7.6 Digital Coding Systems
      7. 2.7.7 Baseband Digital Pulse Modulation
    8. 2.8 Spread Spectrum Systems
  10. 3 Vacuum Tube Principles
    1. 3.1 Introduction
    2. 3.2 Characteristics of Electrons
      1. 3.2.1 Electron Optics
      2. 3.2.2 Magnetic Field Effects
      3. 3.2.3 Thermal Emission from Metals
      4. 3.2.4 Secondary Emission
    3. 3.3 Types of Vacuum Tubes
      1. 3.3.1 Diode
        1. 3.3.1.1 Applications
      2. 3.3.2 Triode
      3. 3.3.3 Tetrode
        1. 3.3.3.1 Application Example
      4. 3.3.4 Pentode
        1. 3.3.4.1 Application Example
    4. 3.4 High-Frequency Operating Limits
      1. 3.4.1 Transit-Time Effects
    5. 3.5 Vacuum Tube Design
      1. 3.5.1 Device Cooling
        1. 3.5.1.1 Air Cooling
        2. 3.5.1.2 Water Cooling
        3. 3.5.1.3 Vapor-Phase Cooling
        4. 3.5.1.4 Special Applications
      2. 3.5.2 Cathode Assembly
        1. 3.5.2.1 Oxide Cathode
        2. 3.5.2.2 Thoriated-Tungsten Cathode
        3. 3.5.2.3 Tungsten-Impregnated Cathode
        4. 3.5.2.4 Cathode Construction
        5. 3.5.2.5 Velocity of Emission
      3. 3.5.3 Grid Structures
        1. 3.5.3.1 Wire Grids
        2. 3.5.3.2 K-Grid
        3. 3.5.3.3 Pyrolytic Grid
        4. 3.5.3.4 Grid Physical Structure
        5. 3.5.3.5 Secondary Emission Considerations
      4. 3.5.4 Plate Assembly
        1. 3.5.4.1 Ceramic Elements
        2. 3.5.4.2 Aluminum Oxide Ceramics
        3. 3.5.4.3 Beryllium Oxide Ceramics
        4. 3.5.4.4 Other Ceramics
    6. 3.6 Tube Construction
      1. 3.6.1 Connection Points
      2. 3.6.2 Tube Sockets
    7. 3.7 Neutralization
      1. 3.7.1 Circuit Analysis
      2. 3.7.2 Circuit Design
        1. 3.7.2.1 Below VHF
        2. 3.7.2.2 VHF and Above
      3. 3.7.3 Grounded-Grid Amplifier Neutralization
      4. 3.7.4 Grid impedance
        1. 3.7.4.1 Application Example
      5. 3.7.5 Self-Neutralizing Frequency
      6. 3.7.6 Neutralization Adjustment
    8. 3.8 Electron Tube Characteristics
      1. 3.8.1 Interpretation of Tube Data
  11. 4 Designing Vacuum Tube Systems
    1. 4.1 Introduction
      1. 4.1.1 Class A Amplifier
      2. 4.1.2 Class B and AB Amplifiers
      3. 4.1.3 Class C Amplifier
    2. 4.2 Principles of RF Power Amplification
      1. 4.2.1 Drive Power Requirements
        1. 4.2.1.1 Operational Considerations for VHF and UHF
      2. 4.2.2 Mechanical and Electrical Considerations
        1. 4.2.2.1 Lead Lengths
        2. 4.2.2.2 Power Supply Considerations
      3. 4.2.3 Bypassing Tube Elements
        1. 4.2.3.1 Filament Bypassing
        2. 4.2.3.2 Screen and Suppressor Grid Bypassing
        3. 4.2.3.3 Application Examples
      4. 4.2.4 Parasitic Oscillations
        1. 4.2.4.1 Dynatron Oscillation
        2. 4.2.4.2 Harmonic Energy
      5. 4.2.5 Shielding
        1. 4.2.5.1 Pierced Shields
        2. 4.2.5.2 Metal Base Shells and Submounted Sockets
        3. 4.2.5.3 Compartments
      6. 4.2.6 Protection Measures
      7. 4.2.7 Cavity Amplifier Systems
      8. 4.2.8 Bandwidth and Efficiency
      9. 4.2.9 Current Paths
        1. 4.2.9.1 Input Circuit
        2. 4.2.9.2 Output Circuit
      10. 4.2.10 1/4-Wavelength Cavity
        1. 4.2.10.1 Tuning the Cavity
      11. 4.2.11 1/2-Wavelength Cavity
        1. 4.2.11.1 Lengthening the Plate Line
      12. 4.2.12 Folded 1/2-Wavelength Cavity
      13. 4.2.13 Wideband Cavity
      14. 4.2.14 Output Coupling
        1. 4.2.14.1 Inductive Coupling
        2. 4.2.14.2 Capacitive Coupling
        3. 4.2.14.3 PA Loading
      15. 4.2.15 Mechanical Design
    3. 4.3 High-Voltage Power Supplies
      1. 4.3.1 Silicon Rectifiers
        1. 4.3.1.1 Operating Rectifiers in Series
        2. 4.3.1.2 Operating Rectifiers in Parallel
        3. 4.3.1.3 Silicon Avalanche Rectifiers
      2. 4.3.2 Thyristor Servo Systems
        1. 4.3.2.1 Inductive Loads
        2. 4.3.2.2 Applications
        3. 4.3.2.3 Triggering Circuits
        4. 4.3.2.4 Fusing
        5. 4.3.2.5 Control Flexibility
      3. 4.3.3 Polyphase Rectifier Circuits
      4. 4.3.4 Power Supply Filter Circuits
        1. 4.3.4.1 Inductive Input Filter
        2. 4.3.4.2 Capacitive Input Filter
      5. 4.3.5 Parameter Sampling Circuits
      6. 4.3.6 Protection Systems
  12. 5 Applying Vacuum Tube Devices
    1. 5.1 Introduction
    2. 5.2 AM Power Amplification Systems
      1. 5.2.1 Control Grid Modulation
      2. 5.2.2 Suppressor Grid Modulation
      3. 5.2.3 Cathode Modulation
      4. 5.2.4 High-Level AM Amplification
        1. 5.2.4.1 Class B Modulator
      5. 5.2.5 Pulse Width Modulation
    3. 5.3 Linear Amplification
      1. 5.3.1 Device Selection
      2. 5.3.2 Grid-Driven Linear Amplifier
      3. 5.3.3 Cathode-Driven Linear Amplifier
      4. 5.3.4 Intermodulation Distortion
    4. 5.4 High-Efficiency Linear Amplification
      1. 5.4.1 Chireix Outphasing Modulated Amplifier
      2. 5.4.2 Doherty Amplifier
      3. 5.4.3 Screen-Modulated Doherty-Type Amplifier
      4. 5.4.4 Terman–Woodyard Modulated Amplifier
      5. 5.4.5 Dome Modulated Amplifier
    5. 5.5 Television Power Amplifier Systems
      1. 5.5.1 System Considerations
      2. 5.5.2 Power Amplifier
        1. 5.5.2.1 Application Example
    6. 5.6 FM Power Amplifier Systems
      1. 5.6.1 Cathode-Driven Triode Amplifier
      2. 5.6.2 Grounded-Grid vs. Grid-Driven Tetrode
      3. 5.6.3 Grid-Driven Tetrode/Pentode Amplifiers
      4. 5.6.4 Impedance Matching into the Grid
        1. 5.6.4.1 Interstage Coupling
      5. 5.6.5 Neutralization
    7. 5.7 Special-Application Amplifiers
      1. 5.7.1 Distributed Amplification
      2. 5.7.2 Radar
        1. 5.7.2.1 Modulator
  13. 6 Microwave Power Tubes
    1. 6.1 Introduction
      1. 6.1.1 Linear-Beam Tubes
      2. 6.1.2 Crossed-Field Tubes
        1. 6.1.2.1 Crossed-Field Amplifier
    2. 6.2 Grid Vacuum Tubes
      1. 6.2.1 Planar Triode
      2. 6.2.2 High-Power UHF Tetrode
      3. 6.2.3 Diacrode
    3. 6.3 Klystron
      1. 6.3.1 Reflex Klystron
      2. 6.3.2 Two-Cavity Klystron
        1. 6.3.2.1 Two-Cavity Klystron Oscillator
        2. 6.3.2.2 Two-Cavity Klystron Amplifier
      3. 6.3.3 Multicavity Klystron
        1. 6.3.3.1 Operating Principles
        2. 6.3.3.2 Emission
        3. 6.3.3.3 Modulating Anode
        4. 6.3.3.4 Magnetic Field
        5. 6.3.3.5 RF Structure
        6. 6.3.3.6 Phased Electron Operation
        7. 6.3.3.7 Types of Devices
      4. 6.3.4 Beam Pulsing
      5. 6.3.5 Integral vs. External Cavity
        1. 6.3.5.1 Number of Cavities
        2. 6.3.5.2 Efficiency
        3. 6.3.5.3 Performance Trade-Offs
      6. 6.3.6 MSDC Klystron
        1. 6.3.6.1 Theory of Operation
        2. 6.3.6.2 Electron Trajectories
        3. 6.3.6.3 Mechanical Construction
        4. 6.3.6.4 MSDC Power Supply
        5. 6.3.6.5 Device Performance
        6. 6.3.6.6 Applying the MSDC Klystron
      7. 6.4 Klystrode/lnductive Output Tube
        1. 6.4.1 Theory of Operation
        2. 6.4.2 Electron Gun
        3. 6.4.3 Grid Structure
        4. 6.4.4 Input Cavity
        5. 6.4.5 Output Cavity
        6. 6.4.6 Application Considerations
        7. 6.4.7 Continuing Research Efforts
      8. 6.5 Constant Efficiency Amplifier
        1. 6.5.1 Theory of Operation
      9. 6.6 Traveling Wave Tube
        1. 6.6.1 Theory of Operation
          1. 6.6.1.1 Interaction Circuit
          2. 6.6.1.2 Pulse Modulation
          3. 6.6.1.3 Electron Gun
          4. 6.6.1.4 Beam Focusing
          5. 6.6.1.5 Collector Assembly
        2. 6.6.2 Operating Efficiency
        3. 6.6.3 Operational Considerations
          1. 6.6.3.1 Intermodulation Distortion
          2. 6.6.3.2 Second-Harmonic Content
          3. 6.6.3.3 AM/PM Conversion
          4. 6.6.3.4 Phase Variation
      10. 6.7 Crossed-Field Tubes
        1. 6.7.1 Magnetron
          1. 6.7.1.1 Operating Principles
          2. 6.7.1.2 Coaxial Magnetron
          3. 6.7.1.3 Frequency-Agile Magnetron
          4. 6.7.1.4 Linear Magnetron
        2. 6.7.2 Backward Wave Oscillator
        3. 6.7.3 Strap-Fed Devices
        4. 6.7.4 Gyrotron
          1. 6.7.4.1 Theory of Operation
          2. 6.7.4.2 Gyrotron Design Variations
      11. 6.8 Other Microwave Devices
        1. 6.8.1 Quasiquantum Devices
        2. 6.8.2 Variations on the Klystron
      12. 6.9 Microwave Tube Life
        1. 6.9.1 Life-Support System
        2. 6.9.2 Protection Measures
          1. 6.9.2.1 Heater Supply
          2. 6.9.2.2 Beam Supply
          3. 6.9.2.3 Magnet Supply
          4. 6.9.2.4 RF Circuits
        3. 6.9.3 Filament Voltage Control
        4. 6.9.4 Cooling System
        5. 6.9.5 Reliability Statistics
          1. 6.9.5.1 MTTR
  14. 7 RF Interconnection and Switching
    1. 7.1 Introduction
      1. 7.1.1 Skin Effect
    2. 7.2 Coaxial Transmission Line
      1. 7.2.1 Electrical Parameters
        1. 7.2.1.1 Transverse Electromagnetic Mode
        2. 7.2.1.2 Dielectric
        3. 7.2.1.3 Impedance
        4. 7.2.1.4 Resonant Characteristics
      2. 7.2.2 Electrical Considerations
      3. 7.2.3 Coaxial Cable Ratings
        1. 7.2.3.1 Power Rating
        2. 7.2.3.2 Connector Effects
        3. 7.2.3.3 Attenuation
        4. 7.2.3.4 Phase Stability
      4. 7.2.4 Mechanical Parameters
    3. 7.3 Waveguide
      1. 7.3.1 Propagation Modes
        1. 7.3.1.1 Dual-Polarity Waveguide
        2. 7.3.1.2 Efficiency
      2. 7.3.2 Ridged Waveguide
      3. 7.3.3 Circular Waveguide
        1. 7.3.3.1 Parasitic Energy
      4. 7.3.4 Doubly Truncated Waveguide
      5. 7.3.5 Impedance Matching
        1. 7.3.5.1 Waveguide Filters
      6. 7.3.6 Installation Considerations
        1. 7.3.6.1 Tuning
        2. 7.3.6.2 Waveguide Hardware
      7. 7.3.7 Cavity Resonators
    4. 7.4 RF Combiner and Diplexer Systems
      1. 7.4.1 Passive Filters
        1. 7.4.1.1 Filter Type
        2. 7.4.1.2 Filter Alignment
        3. 7.4.1.3 Filter Order
      2. 7.4.2 Four-Port Hybrid Combiner
      3. 7.4.3 Nonconstant-Impedance Diplexer
      4. 7.4.4 Constant-Impedance Diplexer
        1. 7.4.4.1 Band-Stop Diplexer
        2. 7.4.4.2 Bandpass Constant-Impedance Diplexer
        3. 7.4.4.3 Isolation of f1 to f2
        4. 7.4.4.4 Intermodulation Products
        5. 7.4.4.5 Group Delay
      5. 7.4.5 Microwave Combiners
      6. 7.4.6 Hot-Switching Combiners
        1. 7.4.6.1 Phase Relationships
        2. 7.4.6.2 Variable-Dielectric Vane
        3. 7.4.6.3 Dielectric Posts
        4. 7.4.6.4 Variable-Phase Hybrid
      7. 7.4.7 Phased-Array Antenna Systems
        1. 7.4.7.1 Phase-Shift Devices
        2. 7.4.7.2 Radar System Duplexer
    5. 7.5 High-Power Isolators
      1. 7.5.1 Theory of Operation
      2. 7.5.2 Applications
        1. 7.5.2.1 Hot Switch
        2. 7.5.2.2 Diplexer
        3. 7.5.2.3 Multiplexer
  15. 8 Properties of Materials
    1. 8.1 Metals
      1. 8.1.1 Skin Depth
      2. 8.1.2 Heat Conduction
      3. 8.1.3 Thermal Expansion
    2. 8.2 Dielectrics
      1. 8.2.1 Frequency Dependence of the Properties
    3. 8.3 Tabular Data
      1. 8.3.1 Electrical Resistivity of Pure Metals
      2. 8.3.2 Electrical Resistivity of Selected Alloys
      3. 8.3.3 Resistance of Wires
      4. 8.3.4 Dielectric Constants of Common Materials
  16. 9 Cooling Considerations
    1. 9.1 Introduction
      1. 9.1.1 Thermal Properties
      2. 9.1.2 Heat Transfer Mechanisms
        1. 9.1.2.1 Conduction
        2. 9.1.2.2 Convection
        3. 9.1.2.3 Radiation
      3. 9.1.3 Physics of Boiling Water
    2. 9.2 Application of Cooling Principles
      1. 9.2.1 Forced-Air Cooling Systems
        1. 9.2.1.1 Cooling Airflow Data
        2. 9.2.1.2 Blower Selection
      2. 9.2.2 Water Cooling
        1. 9.2.2.1 Cooling System Design
        2. 9.2.2.2 Water Purity and Resistivity
        3. 9.2.2.3 Condensation
        4. 9.2.2.4 Preventive Maintenance
      3. 9.2.3 Vapor-Phase Cooling
        1. 9.2.3.1 Anode Design
        2. 9.2.3.2 Boiler
        3. 9.2.3.3 Insulating Tubing
        4. 9.2.3.4 Control Box
        5. 9.2.3.5 Equalizer Line
        6. 9.2.3.6 Condenser
        7. 9.2.3.7 Pressure Interlock
        8. 9.2.3.8 Piping
        9. 9.2.3.9 Automatic Refilling System
        10. 9.2.3.10 Alternative Vapor Cooling Systems
        11. 9.2.3.11 Maintenance
      4. 9.2.4 Temperature Measurements
        1. 9.2.4.1 “Crayon” Temperature Measurement
        2. 9.2.4.2 Phase-Change Fluid
        3. 9.2.4.3 Selection Process
      5. 9.2.5 Air-Handling System
    3. 9.3 Operating Environment
      1. 9.3.1 Air-Handling System
      2. 9.3.2 Air Cooling System Design
        1. 9.3.2.1 Case 1
        2. 9.3.2.2 Case 2
        3. 9.3.2.3 Case 3
      3. 9.3.3 Site Design Guidelines
        1. 9.3.3.1 Closed Site Design
        2. 9.3.3.2 Open Site Design
        3. 9.3.3.3 Hybrid Design
      4. 9.3.4 Water/Vapor Cooling System Maintenance
        1. 9.3.4.1 Tests for Purity
        2. 9.3.4.2 Foaming Test for Water Purity
  17. 10 Reliability Considerations
    1. 10.1 Introduction
      1. 10.1.1 Terminology
    2. 10.2 Quality Assurance
      1. 10.2.1 Inspection Process
      2. 10.2.2 Reliability Evaluation
        1. 10.2.2.1 Parts-Count Method
        2. 10.2.2.2 Stress-Analysis Method
      3. 10.2.3 Failure Analysis
      4. 10.2.4 Standardization
    3. 10.3 Reliability Analysis
      1. 10.3.1 Statistical Reliability
        1. 10.3.1.1 Roller-Coaster Hazard Rate
      2. 10.3.2 Environmental Stress Screening
      3. 10.3.3 Latent Defects
      4. 10.3.4 Operating Environment
      5. 10.3.5 Failure Modes
      6. 10.3.6 Maintenance Considerations
        1. 10.3.6.1 Common-Mode Failure
        2. 10.3.6.2 Spare Parts
    4. 10.4 Vacuum Tube Reliability
      1. 10.4.1 Thermal Cycling
      2. 10.4.2 Tube-Changing Procedure
      3. 10.4.3 Power Tube Conditioning
        1. 10.4.3.1 Power Supply
        2. 10.4.3.2 Conditioning Procedure
        3. 10.4.3.3 Considerations for Very Large Tubes
        4. 10.4.3.4 Safety
      4. 10.4.4 Filament Voltage
        1. 10.4.4.1 Black Heat
      5. 10.4.5 Filament Voltage Management
        1. 10.4.5.1 Klystron Devices
      6. 10.4.6 PA Stage Tuning
      7. 10.4.7 Fault Protection
      8. 10.4.8 Vacuum Tube Life
        1. 10.4.8.1 Catastrophic Failures
      9. 10.4.9 Examining Tube Performance
      10. 10.4.10 Shipping and Handling Vacuum Tubes
    5. 10.5 Klystron Reliability
      1. 10.5.1 Cleaning and Flushing the Cooling System
        1. 10.5.1.1 Transmitter Flushing
        2. 10.5.1.2 Flushing Klystron Water Lines
        3. 10.5.1.3 Cleaning Klystron Water Lines
        4. 10.5.1.4 Flushing and Cleaning Magnet Water Lines
        5. 10.5.1.5 General Cleaning
      2. 10.5.2 Cleaning Ceramic Elements
      3. 10.5.3 Reconditioning Klystron Gun Elements
      4. 10.5.4 Focusing Electromagnet Maintenance
      5. 10.5.5 Power Control Considerations
        1. 10.5.5.1 Primary Power Interruption
  18. 11 Device Performance Criteria
    1. 11.1 Introduction
    2. 11.2 Measurement Parameters
      1. 11.2.1 Power Measurements
        1. 11.2.1.1 Root Mean Square
        2. 11.2.1.2 Average-Response Measurement
        3. 11.2.1.3 Peak-Response Measurement
        4. 11.2.1.4 Measurement Bandwidth
        5. 11.2.1.5 Meter Accuracy
        6. 11.2.1.6 Radio Frequency Power Measurement
      2. 11.2.2 Decibel Measurement
      3. 11.2.3 Noise Measurement
      4. 11.2.4 Phase Measurement
        1. 11.2.4.1 Relation to Frequency
      5. 11.2.5 Nonlinear Distortion
        1. 11.2.5.1 Harmonic Distortion
        2. 11.2.5.2 Intermodulation Distortion
        3. 11.2.5.3 Measurement Techniques
        4. 11.2.5.4 Addition and Cancellation of Distortion Components
        5. 11.2.5.5 Intermodulation Precorrection Techniques
    3. 11.3 Vacuum Tube Operating Parameters
      1. 11.3.1 Stage Tuning
        1. 11.3.1.1 Power Grid Tubes
        2. 11.3.1.2 Screen Voltage
        3. 11.3.1.3 Back-Heating by Electrons
      2. 11.3.2 Amplifier Balance
      3. 11.3.3 Parallel Tube Amplifiers
      4. 11.3.4 Harmonic Energy
        1. 11.3.4.1 Controlling Harmonics
      5. 11.3.5 Klystron Tuning Considerations
      6. 11.3.6 Intermodulation Distortion
        1. 11.3.6.1 Generation of Radio Frequency Intermodulation Products
        2. 11.3.6.2 Intermodulation as a Function of Turnaround Loss
    4. 11.4 Voltage Standing Wave Ratio
    5. 11.5 Radio Frequency System Performance
      1. 11.5.1 Key System Measurements
      2. 11.5.2 Synchronous AM in FM Systems
        1. 11.5.2.1 Bandwidth Limiting
        2. 11.5.2.2 Effects of Synchronous Amplitude Modulation
      3. 11.5.3 Incidental Phase Modulation
        1. 11.5.3.1 Bandwidth Considerations
        2. 11.5.3.2 Corrective Procedures
      4. 11.5.4 Carrier Amplitude Regulation
      5. 11.5.5 Site-Related Intermodulation Products
        1. 11.5.5.1 Receiver Intermod
        2. 11.5.5.2 Hardware Intermod
  19. 12 RF System Maintenance and Troubleshooting
    1. 12.1 Introduction
    2. 12.2 Routine Maintenance
      1. 12.2.1 Maintenance Log
        1. 12.2.1.1 Case Study #1
        2. 12.2.1.2 Case Study #2
      2. 12.2.2 Preventive Maintenance Routine
        1. 12.2.2.1 Resistors and Capacitors
        2. 12.2.2.2 Power Supply Components
        3. 12.2.2.3 Coils and RF Transformers
        4. 12.2.2.4 Relay Mechanisms
        5. 12.2.2.5 Connection Points
      3. 12.2.3 Cleaning the System
    3. 12.3 Transmission Line and Antenna
      1. 12.3.1 Effects of Modulation
      2. 12.3.2 Maintenance Considerations
    4. 12.4 High-Voltage Power Supply
      1. 12.4.1 Power Supply Maintenance
      2. 12.4.2 Power Supply Metering
      3. 12.4.3 Overload Sensor
      4. 12.4.4 Transient Disturbances
      5. 12.4.5 Single Phasing
    5. 12.5 Troubleshooting Procedure
      1. 12.5.1 Factory Service Assistance
      2. 12.5.2 Plate Overload Fault
        1. 12.5.2.1 Troubleshooting Procedure
        2. 12.5.2.2 Process of Elimination
      3. 12.5.3 Radio Frequency System Faults
        1. 12.5.3.1 Component Substitution
        2. 12.5.3.2 VSWR Overload
      4. 12.5.4 Power Control Faults
        1. 12.5.4.1 Thyristor Control System
        2. 12.5.4.2 Interlock Failures
        3. 12.5.4.3 Step-Start Faults
      5. 12.5.5 Protection Circuits
  20. 13 Safe Handling of Vacuum Tube Devices
    1. 13.1 Introduction
    2. 13.2 Electric Shock
      1. 13.2.1 Effects on the Human Body
      2. 13.2.2 Circuit Protection Hardware
      3. 13.2.3 Working with High Voltage
        1. 13.2.3.1 Radio Frequency Considerations
      4. 13.2.4 First Aid Procedures
    3. 13.3 Operating Hazards
      1. 13.3.1 OSHA Safety Considerations
        1. 13.3.1.1 Protective Covers
        2. 13.3.1.2 Identification and Marking
        3. 13.3.1.3 Grounding
      2. 13.3.2 Beryllium Oxide Ceramics
      3. 13.3.3 Corrosive and Poisonous Compounds
      4. 13.3.4 FC-75 Toxic Vapor
    4. 13.4 Nonionizing Radiation
      1. 13.4.1 NEPA Mandate
      2. 13.4.2 Revised Guidelines
      3. 13.4.3 Multiple-User Sites
      4. 13.4.4 Operator Safety Considerations
      5. 13.4.5 X-Ray Radiation Hazard
      6. 13.4.6 Implosion Hazard
      7. 13.4.7 Hot Coolant and Surfaces
      8. 13.4.8 Polychlorinated Biphenyls
        1. 13.4.8.1 Governmental Action
  21. Appendix: Mathematics, Symbols, and Physical Constants
  22. Index

Product information

  • Title: Power Vacuum Tubes Handbook, 3rd Edition
  • Author(s): Jerry Whitaker
  • Release date: December 2017
  • Publisher(s): CRC Press
  • ISBN: 9781351833271