O'Reilly logo

Plasmonic Nanoelectronics and Sensing by Hong-Son Chu, Er-Ping Li

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Chapter 4 Time-domain simulation for plasmonic devices

In this chapter, the finite-difference time-domain method (FDTD) is developed and implemented for the modeling and simulation of passive and active plasmonic devices. For the simulation of passive devices, the Lorentz–Drude (LD) dispersive model is incorporated into the time-dependent Maxwell equations. For the simulation of active plasmonics, a hybrid approach, which combines the multilevel multi-electron quantum model (to simulate the solid state part of a structure) and the LD dispersive model (to simulate the metallic part of the structure), is used. In addition, the multilevel multi-electron quantum mode (solid-state model) is modified to simulate the semiconductor plasmonics. For ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required