You are previewing Plasmonic Nanoelectronics and Sensing.
O'Reilly logo
Plasmonic Nanoelectronics and Sensing

Book Description

Plasmonic nanostructures provide new ways of manipulating the flow of light with nanostructures and nanoparticles exhibiting optical properties never before seen in the macro-world. Covering plasmonic technology from fundamental theory to real world applications, this work provides a comprehensive overview of the field. • Discusses the fundamental theory of plasmonics, enabling a deeper understanding of plasmonic technology • Details numerical methods for modeling, design and optimization of plasmonic nanostructures • Includes step-by-step design guidelines for active and passive plasmonic devices, demonstrating the implementation of real devices in the standard CMOS nanoscale electronic-photonic integrated circuit to help cut design, fabrication and characterisation time and cost • Includes real-world case studies of plasmonic devices and sensors, explaining the benefits and downsides of different nanophotonic integrated circuits and sensing platforms. Ideal for researchers, engineers and graduate students in the fields of nanophotonics and nanoelectronics as well as optical biosensing.

Table of Contents

  1. Cover
  2. Halftitle
  3. Series
  4. Title
  5. Copyright
  6. Contents
  7. Contributors
  8. Preface
  9. 1 Fundamentals of plasmonics
    1. 1.1 Electromagnetic field equations
      1. 1.1.1 Maxwell’s equations in a medium
      2. 1.1.2 Material equations
      3. 1.1.3 Temporal and spatial dispersion in metals
    2. 1.2 The local-response approximation
      1. 1.2.1 The energy of an electromagnetic field in metals
      2. 1.2.2 Properties of the complex dielectric permittivity
      3. 1.2.3 The conduction-electron contribution
      4. 1.2.4 The bound-charge contribution
    3. 1.3 Electromagnetic fields in metals
      1. 1.3.1 Plasmon classification
      2. 1.3.2 Bulk plasmon modes
      3. 1.3.3 Surface plasmon modes
    4. References
  10. 2 Plasmonic properties of metal nanostructures
    1. 2.1 Plasmonic modes in spherical geometry
      1. 2.1.1 Spherical harmonics
      2. 2.1.2 Electromagnetic fields in vector spherical harmonics
      3. 2.1.3 Spherical plasmons
      4. 2.1.4 Scattering by a sphere
      5. 2.1.5 Cross-sections
      6. 2.1.6 A multilayer sphere
    2. 2.2 Plasmonic modes in cylindrical geometry
      1. 2.2.1 Cylindrical harmonics
      2. 2.2.2 Electromagnetic fields in vector cylindrical harmonics
      3. 2.2.3 Cylindrical plasmon polaritons
      4. 2.2.4 Scattering by a cylinder
      5. 2.2.5 Cross-sections per unit length
      6. 2.2.6 Multilayer cylinder
    3. 2.3 Plasmonic modes in planar geometry
      1. 2.3.1 Planar harmonics
      2. 2.3.2 Electromagnetic fields in vector planar harmonics
      3. 2.3.3 Planar plasmon polaritons
      4. 2.3.4 Reflection and transmission by a slab
      5. 2.3.5 Reflectance, transmittance, and absorptance
      6. 2.3.6 A multilayer slab
    4. References
  11. 3 Frequency-domain methods for modeling plasmonics
    1. 3.1 Introduction
    2. 3.2 Rigorous coupled-wave analysis
      1. 3.2.1 Formulations
      2. 3.2.2 Modeling 2D and 3D plasmonic nanostructures with RCWA
    3. 3.3 A semi-analytical method for near-field coupling study
      1. 3.3.1 Superlens and subwavelength imaging
      2. 3.3.2 Object–superlens coupling
    4. 3.4 Summary
    5. References
  12. 4 Time-domain simulation for plasmonic devices
    1. 4.1 Introduction
    2. 4.2 Formulation
      1. 4.2.1 A model for metals
      2. 4.2.2 A model for solid-state materials
      3. 4.2.3 Simulation of an MSM waveguide and a microcavity
      4. 4.2.4 SPP generation using an MSM microdisk
    3. 4.3 Surface plasmon generation in semiconductor devices
    4. 4.4 Implementation of the LD model on a GPU
      1. 4.4.1 GPU implementation
      2. 4.4.2 Applications
    5. 4.5 Summary
    6. References
  13. 5 Passive plasmonic waveguide-based devices
    1. 5.1 Introduction
    2. 5.2 The vertical hybrid Ag–SiO2–Si plasmonic waveguide and devices based on it
      1. 5.2.1 Theoretical background
      2. 5.2.2 The dependence of the propagation characteristics on the thickness of the SiO2 stripe
      3. 5.2.3 The dependence of the propagation characteristics on the dimensions of the Si nanowire
      4. 5.2.4 The propagation characteristics of the vertical hybrid, metal–insulator–metal, and dielectric-loaded plasmonic waveguides
      5. 5.2.5 Waveguide couplers
      6. 5.2.6 Waveguide bends
      7. 5.2.7 Power splitters
      8. 5.2.8 Ring resonator filters
    3. 5.3 Complementary metal–oxide–semiconductor compatible hybrid plasmonic waveguide devices
      1. 5.3.1 CMOS-compatible plasmonic materials
      2. 5.3.2 Vertical hybrid Cu–SiO2–Si plasmonic waveguide devices
      3. 5.3.3 Horizontal hybrid Cu–SiO2–Si–SiO2–Cu plasmonic waveguide devices
    4. References
  14. 6 Silicon-based active plasmonic devices for on-chip integration
    1. 6.1 Introduction
    2. 6.2 Plasmonic modulators based on horizontal MISIM plasmonic waveguides
      1. 6.2.1 The operating principle
      2. 6.2.2 Experimental demonstration
      3. 6.2.3 Issues and possible solutions
    3. 6.3 Athermal ring modulators based on vertical metal–insulator–Si hybrid plasmonic waveguides
      1. 6.3.1 Device structure
      2. 6.3.2 Device properties
      3. 6.3.3 Tolerance
    4. 6.4 Schottky-barrier plasmonic detectors
      1. 6.4.1 Device structure
      2. 6.4.2 SPP power absorption
      3. 6.4.3 Quantum efficiency
      4. 6.4.4 Dark current and speed
    5. 6.5 Metallic nanoparticle-based detectors
      1. 6.5.1 Device structure
      2. 6.5.2 LSPR-enhanced absorption
      3. 6.5.3 Experimental demonstration
      4. 6.5.4 Issues and solutions
    6. 6.6 Conclusions
    7. References
  15. 7 Plasmonic biosensing devices and systems
    1. 7.1 Introduction
    2. 7.2 Plasmonic sensing mechanisms
      1. 7.2.1 Resonance conditions for sensing
      2. 7.2.2 Sensitivity and figure of merit
    3. 7.3 Plasmonic biosensing systems
      1. 7.3.1 Sensor structures
      2. 7.3.2 Modulation methods
      3. 7.3.3 Bio-functionalization formats
    4. 7.4 Design methods
      1. 7.4.1 The N-layer model
      2. 7.4.2 The FEM model
    5. 7.5 Plasmonic biosensor design examples
      1. 7.5.1 Graphene-based biosensor design
      2. 7.5.2 Messenger RNA detection
      3. 7.5.3 Point-of-care clinical screening of PSA
    6. References
  16. Index