Preface

Optical filters whose frequency characteristics can be tailored to a desired response are an enabling technology for exploiting the full bandwidth potential of optical fiber communication systems. Optical filter design is typically approached with electromagnetic models where the fields are solved in the frequency or time domain. These techniques are required for characterizing waveguide properties and individual devices such as directional couplers; however, they can become cumbersome and non-intuitive for filter design. A higher level approach that focuses on the filter characteristics providing insight, fast calculation of the filter response, and easy scaling for larger and more complex filters is addressed in this book. The important filter characteristics are the same as those for electrical and digital filters. For example, passband width, stopband rejection, and the transition width between the passband and stopband are all design parameters for bandpass filters. For high bitrate optical communication systems, a filter's dispersion characteristics must also be understood and controlled. Given the large body of knowledge about analog and digital filter design, it is advantageous to analyze optical filters in a similar manner. In particular, this book is unique in presenting digital signal processing techniques for the design of optical filters, providing both background material and theoretical and experimental research results.

The optical filters described are ...

Get Optical Filter Design and Analysis: A Signal Processing Approach now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.