You are previewing Non-standard Antennas.
O'Reilly logo
Non-standard Antennas

Book Description

This book aims at describing the wide variety of new technologies and concepts of non-standard antenna systems - reconfigurable, integrated, terahertz, deformable, ultra-wideband, using metamaterials, or MEMS, etc, and how they open the way to a wide range of applications, from personal security and communications to multifunction radars and towed sonars, or satellite navigation systems, with space-time diversity on transmit and receive. A reference book for designers in this lively scientific community linking antenna experts and signal processing engineers.

Table of Contents

  1. Cover
  2. Title Page
  3. Copyright
  4. Introduction
  5. Part 1: Emerging Concepts
    1. Chapter 1: Joint Diversity and Beamforming for Downlink Communications
      1. 1.1. Introduction
      2. 1.2. Space diversity versus beamforming
      3. 1.3. Signal model
      4. 1.4. Beamforming by SNR maximization
      5. 1.5. Combining transmit diversity and beamforming
      6. 1.6. Minimum variance criterion
        1. 1.6.1. Criterion formulation
        2. 1.6.2. Simulation results
          1. 1.6.2.1. Non-line-of-sight scenario
          2. 1.6.2.2. Line-of-sight scenario
      7. 1.7. Minimum BER criterion
        1. 1.7.1. Criterion formulation
        2. 1.7.2. Simulation results
      8. 1.8. Conclusion
      9. 1.9. Bibliography
    2. Chapter 2: Acoustic Antennas for Biomedical and Industrial Ultrasonic Imaging
      1. 2.1. Introduction
      2. 2.2. Basic ultrasonic transducers
        1. 2.2.1. Transducer performance
        2. 2.2.2. Single-element transducer design
        3. 2.2.3. Material aspects
        4. 2.2.4. Radiation of single-element transducers
      3. 2.3. Transducer arrays
      4. 2.4. Piezoelectric material issues
        1. 2.4.1. Material requirements
        2. 2.4.2. Piezocomposite materials
        3. 2.4.3. Piezoelectric material characterization
      5. 2.5. Modeling, design and characterization of ultrasonic antennas
        1. 2.5.1. Modeling transducer performance
        2. 2.5.2. Tools for evaluation of transducer performance
      6. 2.6. High frequency (HF) acoustic antennas for biomedical microscanning applications
      7. 2.7. New acoustic antennas based on technology of capacitive micromachined ultrasonic transducers
        1. 2.7.1. Structure of cMUT transducers
        2. 2.7.2. Basic electromechanical properties of cMUT
        3. 2.7.3. Modeling a cMUT loaded with fluid
      8. 2.8. Conclusion
      9. 2.9. Bibliography
    3. Chapter 3: Space-time Exploration for Airborne Radars
      1. 3.1. Introduction
      2. 3.2. Colored space-time exploration
        1. 3.2.1. Digital beamforming (DBF)
        2. 3.2.2. Colored transmission
          1. 3.2.2.1. Principles
          2. 3.2.2.2. Circulating pulse
          3. 3.2.2.3. Fast scanning (intra-pulse scanning)
          4. 3.2.2.4. Circulating chirp
          5. 3.2.2.5. Bidimensional frequency coding
          6. 3.2.2.6. Target coherence and diversity gains
      3. 3.3. Interleaved scanning
      4. 3.4. Wideband GMTI [LEC 02]
      5. 3.5. Conclusion
      6. 3.6. Bibliography
    4. Chapter 4: Multifunction Antenna System Concepts: Opportunity for Ultra-wideband Radars?
      1. 4.1. Multifunction radio frequency (RF) systems
        1. 4.1.1. Multimission platforms and multifunction RF systems
        2. 4.1.2. Analysis of operational use and possible sharing alternatives
        3. 4.1.3. Analysis of several multifunction RF systems in the framework of the SIMEF project
        4. 4.1.4. Technological requirements for multifunction RF systems
      2. 4.2. Multifunction RF systems and Ultra-Wideband (UWB) radars
        1. 4.2.1. Characteristics of UWB RF front-end
        2. 4.2.2. Reuse of a multifunction RF system for a UWB radar function
        3. 4.2.3. Example of UWB radar function added to a multifunction RF system
      3. 4.3. Conclusion
      4. 4.4. Bibliography
  6. Part 2: Technologies
    1. Chapter 5: From a Molecule to an Electro-optic Antenna
      1. 5.1. Introduction
      2. 5.2. Synthesis of the electro-optic polymer
        1. 5.2.1. Electro-optic polymer synthesis
        2. 5.2.2. Physical properties of polymer PIII
      3. 5.3. Antenna design
      4. 5.4. Device fabrication and poling
      5. 5.5. Experimental setup
      6. 5.6. Results
      7. 5.7. Conclusion
      8. 5.8. Acknowledgments
      9. 5.9. Bibliography
    2. Chapter 6: Terahertz Broadband Micro-antennas for Continuous Wave Imaging
      1. 6.1. Introduction
        1. 6.1.1. First approach
        2. 6.1.2. Second approach
      2. 6.2. UWB THz antennas for superconducting hot electron bolometers
        1. 6.2.1. Background on UWB antenna geometry
        2. 6.2.2. The log-periodic planar geometry
        3. 6.2.3. Input impedance of the planar log-periodic antenna
        4. 6.2.4. Surface currents of the planar log-periodic antenna
        5. 6.2.5. Planar log-periodic antenna: design of a large scale microwave model
        6. 6.2.6. Radiation patterns of the planar log-periodic antenna
        7. 6.2.7. Electromagnetic coupling between neighboring array elements
        8. 6.2.8. Log-periodic planar antenna implementation with a cryogenic THz detector
      3. 6.3. High-impedance THz antennas for semiconducting bolometers
        1. 6.3.1. High-impedance wideband structures
        2. 6.3.2. Simulations and measurements: technological approach
        3. 6.3.3. Wideband angular concept: spiral antenna
        4. 6.3.4. Modified spiral: square spiral antenna
        5. 6.3.5. Log-periodic concept: array of dipoles
        6. 6.3.6. New concept: multi-tail dipole antenna with ground plane
        7. 6.3.7. THz multi-tail dipole: implementation example
      4. 6.4. Conclusion
      5. 6.5. Acknowledgments
      6. 6.6. Bibliography
    3. Chapter 7: Dual Frequency Millimeter Feed
      1. 7.1. Introduction
      2. 7.2. Overview
      3. 7.3. Technology and first design
      4. 7.4. Optimization and final design
      5. 7.5. The whole antenna: horn + reflector
      6. 7.6. Comparison to measurements
      7. 7.7. Conclusion
      8. 7.8. Acknowledgment
      9. 7.9. Bibliography
    4. Chapter 8: Reconfigurable Printed Antennas
      1. 8.1. Introduction
      2. 8.2. Active antennas
      3. 8.3. Active components used for reconfiguration
        1. 8.3.1. The varactor diode
        2. 8.3.2. The PIN diode
      4. 8.4. Printed antennas and compact antennas
      5. 8.5. Frequency reconfigurable antennas
        1. 8.5.1. Continuous frequency reconfiguration
          1. 8.5.1.1. Printed and compact antennas
          2. 8.5.1.2. Compact antennas with shorting pins
        2. 8.5.2. Frequency hopping reconfiguration
      6. 8.6. Radiation pattern reconfiguration
        1. 8.6.1. Printed arrays
        2. 8.6.2. DC and RF electrical circuits
          1. 8.6.2.1. DC bias polarization circuits
          2. 8.6.2.2. Passive microwave circuits
          3. 8.6.2.3. Active microwave phase shifters
        3. 8.6.3. Antennas with integrated phase shifters
      7. 8.7. Polarization agile antennas
      8. 8.8. Self-adjusting antennas
        1. 8.8.1. Self adjusting frequency agile microstrip antennas
        2. 8.8.2. Self-adjusting polarization agile microstrip antennas
      9. 8.9. Conclusion
      10. 8.10. Acknowledgments
      11. 8.11. Bibliography
    5. Chapter 9: Wideband Antennas and Artificial Magnetic Conductors
      1. 9.1. Introduction
      2. 9.2. Wideband antenna and metamaterial
        1. 9.2.1. How to design a wideband antenna?
          1. 9.2.1.1. Physical approach
          2. 9.2.1.2. Geometrical approach
        2. 9.2.2. What kind of metamaterial?
          1. 9.2.2.1. Context
          2. 9.2.2.2. Problem
      3. 9.3. How to characterize an artificial magnetic conductor?
        1. 9.3.1. Principle
        2. 9.3.2. Example
      4. 9.4. Narrow bandwidth antenna above an AMC
        1. 9.4.1. Dipole and AMC
        2. 9.4.2. Dipole and PMC
      5. 9.5. Wideband antenna placed above an AMC
        1. 9.5.1. Archimedean spiral above an AMC
        2. 9.5.2. Bow-Tie antenna above an AMC
      6. 9.6. Very wideband antenna placed above an AMC
      7. 9.7. Conclusions
      8. 9.8. Acknowledgments
      9. 9.9. Bibliography
    6. Chapter 10: High Impedance Surface Close to a Radiating Dipole
      1. 10.1. Introduction
      2. 10.2. Antenna study
      3. 10.3. Analysis of the phenomena
      4. 10.4. Phenomenological model of the radiating array
      5. 10.5. Conclusion
      6. 10.6. Bibliography
  7. Part 3: Detection/Localization
    1. Chapter 11: Advanced Processing for DOA Estimation
      1. 11.1. Introduction
        1. 11.1.1. Standard processing for DOA estimation
        2. 11.1.2. New operational needs and advanced DOA estimation techniques
      2. 11.2. Observation model, problem formulation and standard MUSIC method
        1. 11.2.1. Observation model
        2. 11.2.2. Problem formulation
        3. 11.2.3. Standard MUSIC method
      3. 11.3. Non-selective advanced DOA estimation techniques
        1. 11.3.1. Presentation
        2. 11.3.2. DOA estimation methods exploiting diversely polarized antennas
        3. 11.3.3. Sequential DOA estimation techniques
        4. 11.3.4. Non-circular DOA estimation methods
        5. 11.3.5. Spatio-temporal DOA estimation methods
      4. 11.4. Selective advanced DOA estimation methods
        1. 11.4.1. Presentation
        2. 11.4.2. DOA estimation techniques with a reference or cooperative DOA estimation techniques
        3. 11.4.3. Cyclic DOA estimation methods
        4. 11.4.4. Higher Order DOA estimation methods
        5. 11.4.5. DOA estimation methods after blind identification of the signatures
      5. 11.5. Conclusion
      6. 11.6. Bibliography
    2. Chapter 12: Multifunction Airborne Antennas
      1. 12.1. Introduction
      2. 12.2. Functions performed by the principal sensors of a fighter aircraft
      3. 12.3. Technique of active antennas
      4. 12.4. Multifunction antennas
        1. 12.4.1. Antenna architecture
          1. 12.4.1.1. Assembling technology
          2. 12.4.1.2. Allocation of transmit/receive functions
          3. 12.4.1.3. Multiple polarization
        2. 12.4.2. Dual-polarization antenna
      5. 12.5. Model for the antenna
      6. 12.6. Potential prospects
      7. 12.7. Conclusion
      8. 12.8. Bibliography
    3. Chapter 13: Active Sonar: Port/Starboard Discrimination on Very Low Frequency Triplet Arrays
      1. 13.1. Introduction
      2. 13.2. Port/starboard beamforming on a triplet array
        1. 13.2.1. Conventional (or cardioid) beamforming and limitations
        2. 13.2.2. Adaptive port-starboard beamforming:
        3. 13.2.3. Experimental at-sea results
        4. 13.2.4. Conclusion
      3. 13.3. Adaptive beamforming on a triplet array for reverberation reduction
        1. 13.3.1. Introduction
        2. 13.3.2. Conclusion
      4. 13.4. Bibliography
    4. Chapter 14: Airborne High Precision Location of Radiating Sources
      1. 14.1. Introduction
      2. 14.2. Problem formulation
      3. 14.3. Description of lab experiment
        1. 14.3.1. Context
        2. 14.3.2. General principle
          1. 14.3.2.1. Compensation methods
            1. 14.3.2.1.1. Use of signals transmitted by sources with known locations
            2. 14.3.2.1.2. Antenna shape estimation using strain gauges
          2. 14.3.2.2. Direction finding with antenna shape estimation
        3. 14.3.3. Experiment
          1. 14.3.3.1. Description
          2. 14.3.3.2. Results
            1. 14.3.3.2.1. Performance of localization – reference case
            2. 14.3.3.2.2. Performance of localization – effects of deformations on interferometry
            3. 14.3.3.2.3. Performance of localization – methods of compensation
      4. 14.4. Conclusion
      5. 14.5. Bibliography
    5. Chapter 15: Ground-based Deformable Antennas
      1. 15.1. Introduction
      2. 15.2. Impact of antenna distortions on radar systems
        1. 15.2.1. Array factor of deformed antennas
        2. 15.2.2. Impact on antenna pointing
        3. 15.2.3. Parameters of targets in the pointing direction
        4. 15.2.4. Conclusion and compensation method
      3. 15.3. Instrumentation of deformable antennas
        1. 15.3.1. Mechanical analysis
        2. 15.3.2. Optical Sensor
      4. 15.4. Compensation with knowledge of the antenna shape
        1. 15.4.1. Phase compensation in the main direction
        2. 15.4.2. Compensation by spectral analysis of deformations
          1. 15.4.2.1. Expression of the ideal array factor
          2. 15.4.2.2. Factor expression deformed network
      5. 15.5. Experimentation on a deformable antenna mock-up
      6. 15.6. Conclusion
      7. 15.7. Bibliography
    6. Chapter 16: Automatic Take-off and Landing System
      1. 16.1. Introduction
      2. 16.2. State of the art
      3. 16.3. MAGIC ATOLS main features
      4. 16.4. Radar features
        1. 16.4.1. Functional performances
        2. 16.4.2. Wave form
        3. 16.4.3. Elevation Angular localization
        4. 16.4.4. Low elevation processing
          1. 16.4.4.1. Ground reflection issues
      5. 16.5. MAGIC ATOLS processing for low elevation measurement
        1. 16.5.1. Principle
        2. 16.5.2. Antenna architecture
      6. 16.6. On the field experimental results
      7. 16.7. Conclusion
      8. 16.8. Bibliography
    7. Chapter 17: Anti-jamming for Satellite Navigation
      1. 17.1. Satellite navigation principles
        1. 17.1.1. Triangulation
        2. 17.1.2. GNSS signals: the GPS example
      2. 17.2. Vulnerability of the GNSS signals
        1. 17.2.1. GNSS signal power
        2. 17.2.2. Example of interference scenario
      3. 17.3. GNSS antennas
        1. 17.3.1. GNSS standard antennas
        2. 17.3.2. Non-standard GNSS antennas
        3. 17.3.3. Equipment upgrade
      4. 17.4. Anti-jamming principles
        1. 17.4.1. Space processing
          1. 17.4.1.1. Data model
          2. 17.4.1.2. The power minimization solution
          3. 17.4.1.3. Synthetic antenna
        2. 17.4.2. Space-time processing
        3. 17.4.3. Beamforming
          1. 17.4.3.1. Goal of beamforming
          2. 17.4.3.2. Conventional beamforming
          3. 17.4.3.3. Adaptive beamforming
      5. 17.5. Antenna and associated electronics integration
        1. 17.5.1. Antenna array examples
        2. 17.5.2. Antenna electronics evolution
      6. 17.6. New functions associated with the antenna array
        1. 17.6.1. Detection of interferences
          1. 17.6.1.1. Subspace principle
          2. 17.6.1.2. AIC criterion
        2. 17.6.2. Interferences location
          1. 17.6.2.1. BARTLETT method
          2. 17.6.2.2. CAPON method
          3. 17.6.2.3. MUSIC method
          4. 17.6.2.4. Min-norm method
          5. 17.6.2.5. ESPRIT method
      7. 17.7. Conclusion
      8. 17.8. Bibliography
  8. Part 4: Ultra-Wideband
    1. Chapter 18: Ultra-wideband Antenna Systems
      1. 18.1. Introduction
      2. 18.2. The principles implemented through two applications
        1. 18.2.1. The radar cross-section measurement in UHF-VHF
        2. 18.2.2. An impulse UWB radar with aperture synthesis: PULSAR
          1. 18.2.2.1. Problem of electromagnetic detection
          2. 18.2.2.2. PULSAR project
      3. 18.3. The ultra-wideband antennas
      4. 18.4. Limitations of a mono-source device: implementation of multi-source devices with optoelectronic excitation
        1. 18.4.1. RUGBI project
        2. 18.4.2. Last evolutions around multisource systems
      5. 18.5. Pulse antenna systems in high power microwaves
      6. 18.6. Conclusion
      7. 18.7. Bibliography
    2. Chapter 19: Co-design of the Antenna with LNA for Ultra-wideband Applications
      1. 19.1. The interest in co-design
      2. 19.2. Low noise amplifier
      3. 19.3. The antenna
      4. 19.4. Co-design methodology
        1. 19.4.1. Introduction
        2. 19.4.2. Concept of transducer gain
        3. 19.4.3. Variation of the circuit transducer gain
        4. 19.4.4. Implementing joint optimization
      5. 19.5. Protocols and measurement results
      6. 19.6. Bibliography
    3. Chapter 20: Vector Spherical Harmonic Modeling of 3D-antenna Radiation Function or an UWB-RT Simulator
      1. 20.1. Introduction
      2. 20.2. Deterministic channel model based on ray tracing
        1. 20.2.1. PyRay channel simulation tool
          1. 20.2.1.1. Simulator architecture
          2. 20.2.1.2. Propagation channel – ray tracing
          3. 20.2.1.3. Transmission channel
          4. 20.2.1.4. Method for received signal reconstruction
        2. 20.2.2. Antenna related issues
      3. 20.3. Antenna vector function description via VSH
        1. 20.3.1. VSH analysis step
        2. 20.3.2. Calculation of VSH basis (V and W)
        3. 20.3.3. VSH synthesis step
        4. 20.3.4. VSH expansion example
        5. 20.3.5. Data compression for antenna data storage
      4. 20.4. Immediate RT tool application
        1. 20.4.1. Antenna vector function synthesis
        2. 20.4.2. Application to IR-UWB signals
      5. 20.5. Conclusions
      6. 20.6. Bibliography
  9. List of Authors
  10. Index