You are previewing Neutrino Cosmology.
O'Reilly logo
Neutrino Cosmology

Book Description

The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.

Table of Contents

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright
  5. Table of Content
  6. Preface
  7. 1 The basics of neutrino physics
    1. 1.1 The electroweak Standard Model
    2. 1.2 Spontaneous symmetry breaking and fermion masses
    3. 1.3 The basic properties of neutrinos: interactions, masses and oscillations
      1. 1.3.1 Neutrino interactions in the low energy limit
      2. 1.3.2 Dirac and Majorana masses
      3. 1.3.3 The seesaw mechanism
      4. 1.3.4 Flavour oscillations in vacuum
      5. 1.3.5 Flavour oscillations in matter
    4. 1.4 Neutrino experiments
      1. 1.4.1 Oscillation experiments and three-neutrino mixing
      2. 1.4.2 Oscillation experiments and sterile neutrinos
      3. 1.4.3 Neutrino mass scale experiments
      4. 1.4.4 Dirac or Majorana? Neutrinoless double-β decay
    5. 1.5 Nonstandard neutrino–electron interactions
  8. 2 Overview of the Standard Cosmological Model
    1. 2.1 The homogeneous and isotropic universe
      1. 2.1.1 The dynamics of expansion
      2. 2.1.2 Distances in the universe
    2. 2.2 Statistical mechanics in the expanding universe
      1. 2.2.1 The relativistic Boltzmann equation
      2. 2.2.2 When equilibrium holds
    3. 2.3 The expansion stages
      1. 2.3.1 Inflation
      2. 2.3.2 Radiation and matter domination
      3. 2.3.3 Λ (or dark energy) domination
    4. 2.4 A first look at photon and neutrino backgrounds
      1. 2.4.1 Photon decoupling and the formation of the cosmic microwave background
      2. 2.4.2 The cosmic neutrino background
  9. 3 Neutrinos in the early ages
    1. 3.1 The baryon number of the universe
    2. 3.2 Sakharov conditions
    3. 3.3 C, CP, B, out of equilibrium and all that
      1. 3.3.1 C and CP violation
      2. 3.3.2 Baryon and lepton number violation
      3. 3.3.3 Relating baryon and lepton numbers
      4. 3.3.4 The out-of-equilibrium decay scenario
    4. 3.4 Basics of leptogenesis
      1. 3.4.1 Standard leptogenesis and Majorana neutrinos
      2. 3.4.2 Leptogenesis and neutrino oscillation: Two right-handed neutrinos
  10. 4 Neutrinos in the MeV age
    1. 4.1 Neutrino decoupling
    2. 4.2 Neutrino oscillations in the expanding universe
      1. 4.2.1 Effective matter potentials
      2. 4.2.2 Density matrix formalism
      3. 4.2.3 Flavour oscillations and relic neutrino distortions
      4. 4.2.4 Flavour oscillations and relic neutrino asymmetries
      5. 4.2.5 Active–sterile oscillations
    3. 4.3 Big Bang nucleosynthesis
      1. 4.3.1 Neutron–proton chemical equilibrium
      2. 4.3.2 The nuclear network
      3. 4.3.3 Light-element observations
      4. 4.3.4 Theory vs. data
    4. 4.4 Bounds on neutrino properties from Big Bang nucleosynthesis
      1. 4.4.1 Extra relativistic degrees of freedom
      2. 4.4.2 Relic neutrino asymmetries
      3. 4.4.3 Nonstandard neutrino electromagnetic properties and interactions
      4. 4.4.4 Sterile neutrinos and Big Bang nucleosynthesis
  11. 5 Neutrinos in the cosmic microwave background epoch
    1. 5.1 Cosmic microwave background anisotropies
      1. 5.1.1 Overview
      2. 5.1.2 Perturbation equations
      3. 5.1.3 Adiabatic and isocurvature modes
      4. 5.1.4 Power spectra and transfer functions
      5. 5.1.5 Acoustic oscillations
      6. 5.1.6 Temperature anisotropies
      7. 5.1.7 Polarization anisotropies
      8. 5.1.8 Tensor perturbations
    2. 5.2 Neutrino perturbations
      1. 5.2.1 Perturbation equations
      2. 5.2.2 Neutrino isocurvature modes
      3. 5.2.3 Adiabatic mode in the presence of neutrinos
      4. 5.2.4 Free-streaming length
      5. 5.2.5 Linear evolution of neutrino perturbations
      6. 5.2.6 Practical implementation and approximations
    3. 5.3 Effects of neutrinos on primary cosmic microwave background anisotropies
      1. 5.3.1 How can decoupled species affect the cosmic microwave background?
      2. 5.3.2 Effects of massless neutrinos
      3. 5.3.3 Effects of massive neutrinos
      4. 5.3.4 Effects of interacting neutrinos
    4. 5.4 Bounds on neutrinos from primary cosmic-microwave- background anisotropies
      1. 5.4.1 Cosmic microwave background and homogeneous cosmology data sets
      2. 5.4.2 Neutrino abundance
      3. 5.4.3 Neutrino masses
  12. 6 Recent times: neutrinos and structure formation
    1. 6.1 Linear matter power spectrum
      1. 6.1.1 Neutrinoless universe with cold dark matter
      2. 6.1.2 Neutrinoless universe with cold dark matter and baryons
      3. 6.1.3 Impact of massless neutrinos
      4. 6.1.4 Impact of hot dark matter
      5. 6.1.5 Impact of warm dark matter
    2. 6.2 Nonlinear matter power spectrum
      1. 6.2.1 N-body simulations
      2. 6.2.2 Analytic approaches
    3. 6.3 Impact of neutrinos on secondary cosmic microwave background anisotropies
      1. 6.3.1 Late integrated Sachs–Wolfe effect
      2. 6.3.2 Cosmic microwave background lensing
    4. 6.4 Observing the large-scale structure
      1. 6.4.1 Galaxy and cluster power spectrum
      2. 6.4.2 Cluster mass function
      3. 6.4.3 Galaxy weak lensing
      4. 6.4.4 Cosmic microwave background lensing
      5. 6.4.5 Lyman alpha forests
      6. 6.4.6 21-cm surveys
    5. 6.5 Large-scale structure bounds on neutrino properties
      1. 6.5.1 Active neutrino masses
      2. 6.5.2 Neutrino abundance and light sterile neutrinos
      3. 6.5.3 Nonstandard properties of active neutrinos
      4. 6.5.4 Heavy sterile neutrinos (warm dark matter)
  13. 7 Cosmological neutrinos today
    1. 7.1 The ultimate dream: detecting cosmological neutrinos
      1. 7.1.1 Scatterings: GF2 effects are too small
      2. 7.1.2 The order GF interactions and the Stodolsky effect
      3. 7.1.3 Massive neutrinos and β-decaying nuclei
    2. 7.2 Beyond the ultimate dream: neutrino anisotropies in the sky
      1. 7.2.1 Neutrino last scattering surface
      2. 7.2.2 Massless neutrinos
      3. 7.2.3 Massive neutrinos
  14. References
  15. Index