O'Reilly logo

Network Warrior, 2nd Edition by Gary A. Donahue

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Chapter 16. Multilayer Switches

Switches, in the traditional sense, operate at Layer 2 of the OSI stack. The first multilayer switches were called Layer-3 switches because they added the capability to route between VLANs. These days, switches can do just about anything a router can do, including protocol testing and manipulation all the way up to Layer 7. Thus, we now refer to switches that operate above Layer 2 as multilayer switches.

The core benefit of the multilayer switch is the capability to route between VLANs, which is made possible through the addition of virtual interfaces within the switch. These virtual interfaces are tied to VLANs, and are called switched virtual interfaces (SVIs).

Figure 16-1 illustrates the principles behind routing within a switch. First, you assign ports to VLANs. Then, you create SVIs, which allow IP addresses to be assigned to the VLANs. The virtual interface becomes a virtual router interface, thus allowing the VLANs to be routed.

VLANs routed from within a switch

Figure 16-1. VLANs routed from within a switch

Most multilayer switches today do not have visible routers. The router is contained within the circuitry of the switch itself or in the supervisor (i.e., the CPU) of a modular switch. Older switch designs, like the Cisco 4000 chassis switch, have a Layer-3 module that was added to make the switch multilayer-capable. Such modules are no longer needed, since Layer-3 functionality ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required