You are previewing Network Warrior, 2nd Edition.

Network Warrior, 2nd Edition

Cover of Network Warrior, 2nd Edition by Gary A. Donahue Published by O'Reilly Media, Inc.
  1. Network Warrior
    1. Preface
      1. Who Should Read This Book
      2. Conventions Used in This Book
      3. Using Code Examples
      4. We’d Like to Hear from You
      5. Safari® Books Online
      6. Acknowledgments
    2. 1. What Is a Network?
    3. 2. Hubs and Switches
      1. Hubs
      2. Switches
    4. 3. Autonegotiation
      1. What Is Autonegotiation?
      2. How Autonegotiation Works
      3. When Autonegotiation Fails
      4. Autonegotiation Best Practices
      5. Configuring Autonegotiation
    5. 4. VLANs
      1. Connecting VLANs
      2. Configuring VLANs
    6. 5. Trunking
      1. How Trunks Work
      2. Configuring Trunks
    7. 6. VLAN Trunking Protocol
      1. VTP Pruning
      2. Dangers of VTP
      3. Configuring VTP
    8. 7. Link Aggregation
      1. EtherChannel
      2. Cross-Stack EtherChannel
      3. Multichassis EtherChannel (MEC)
      4. Virtual Port Channel
    9. 8. Spanning Tree
      1. Broadcast Storms
      2. MAC Address Table Instability
      3. Preventing Loops with Spanning Tree
      4. Managing Spanning Tree
      5. Additional Spanning Tree Features
      6. Common Spanning Tree Problems
      7. Designing to Prevent Spanning Tree Problems
    10. 9. Routing and Routers
      1. Routing Tables
      2. Route Types
      3. The IP Routing Table
      4. Virtual Routing and Forwarding
    11. 10. Routing Protocols
      1. Communication Between Routers
      2. Metrics and Protocol Types
      3. Administrative Distance
      4. Specific Routing Protocols
    12. 11. Redistribution
      1. Redistributing into RIP
      2. Redistributing into EIGRP
      3. Redistributing into OSPF
      4. Mutual Redistribution
      5. Redistribution Loops
      6. Limiting Redistribution
    13. 12. Tunnels
      1. GRE Tunnels
      2. GRE Tunnels and Routing Protocols
      3. GRE and Access Lists
    14. 13. First Hop Redundancy
      1. HSRP
      2. HSRP Interface Tracking
      3. When HSRP Isn’t Enough
      4. Nexus and HSRP
      5. GLBP
    15. 14. Route Maps
      1. Building a Route Map
      2. Policy Routing Example
    16. 15. Switching Algorithms in Cisco Routers
      1. Process Switching
      2. Interrupt Context Switching
      3. Configuring and Managing Switching Paths
    17. 16. Multilayer Switches
      1. Configuring SVIs
      2. Multilayer Switch Models
    18. 17. Cisco 6500 Multilayer Switches
      1. Architecture
      2. CatOS Versus IOS
      3. Installing VSS
    19. 18. Cisco Nexus
      1. Nexus Hardware
      2. NX-OS
      3. Nexus Iconography
      4. Nexus Design Features
    20. 19. Catalyst 3750 Features
      1. Stacking
      2. Interface Ranges
      3. Macros
      4. Flex Links
      5. Storm Control
      6. Port Security
      7. SPAN
      8. Voice VLAN
      9. QoS
    21. 20. Telecom Nomenclature
      1. Telecom Glossary
    22. 21. T1
      1. Understanding T1 Duplex
      2. Types of T1
      3. Encoding
      4. Framing
      5. Performance Monitoring
      6. Alarms
      7. Troubleshooting T1s
      8. Configuring T1s
    23. 22. DS3
      1. Framing
      2. Line Coding
      3. Configuring DS3s
    24. 23. Frame Relay
      1. Ordering Frame Relay Service
      2. Frame Relay Network Design
      3. Oversubscription
      4. Local Management Interface
      5. Configuring Frame Relay
      6. Troubleshooting Frame Relay
    25. 24. MPLS
    26. 25. Access Lists
      1. Designing Access Lists
      2. ACLs in Multilayer Switches
      3. Reflexive Access Lists
    27. 26. Authentication in Cisco Devices
      1. Basic (Non-AAA) Authentication
      2. AAA Authentication
    28. 27. Basic Firewall Theory
      1. Best Practices
      2. The DMZ
      3. Alternate Designs
    29. 28. ASA Firewall Configuration
      1. Contexts
      2. Interfaces and Security Levels
      3. Names
      4. Object Groups
      5. Inspects
      6. Managing Contexts
      7. Failover
      8. NAT
      9. Miscellaneous
      10. Troubleshooting
    30. 29. Wireless
      1. Wireless Standards
      2. Security
      3. Configuring a WAP
      4. Troubleshooting
    31. 30. VoIP
      1. How VoIP Works
      2. Small-Office VoIP Example
      3. Troubleshooting
    32. 31. Introduction to QoS
      1. Types of QoS
      2. QoS Mechanics
      3. Common QoS Misconceptions
    33. 32. Designing QoS
      1. LLQ Scenario
      2. Configuring the Routers
      3. Traffic-Shaping Scenarios
    34. 33. The Congested Network
      1. Determining Whether the Network Is Congested
      2. Resolving the Problem
    35. 34. The Converged Network
      1. Configuration
      2. Monitoring QoS
      3. Troubleshooting a Converged Network
    36. 35. Designing Networks
      1. Documentation
      2. Naming Conventions for Devices
      3. Network Designs
    37. 36. IP Design
      1. Public Versus Private IP Space
      2. VLSM
      3. CIDR
      4. Allocating IP Network Space
      5. Allocating IP Subnets
      6. IP Subnetting Made Easy
    38. 37. IPv6
      1. Addressing
      2. Simple Router Configuration
    39. 38. Network Time Protocol
      1. What Is Accurate Time?
      2. NTP Design
      3. Configuring NTP
    40. 39. Failures
      1. Human Error
      2. Multiple Component Failure
      3. Disaster Chains
      4. No Failover Testing
      5. Troubleshooting
    41. 40. GAD’s Maxims
      1. Maxim #1
      2. Maxim #2
      3. Maxim #3
    42. 41. Avoiding Frustration
      1. Why Everything Is Messed Up
      2. How to Sell Your Ideas to Management
      3. When to Upgrade and Why
      4. Why Change Control Is Your Friend
      5. How Not to Be a Computer Jerk
    43. Index
    44. About the Author
    45. Colophon
O'Reilly logo

Chapter 6. VLAN Trunking Protocol

In complex networks, managing VLANs can be time-consuming and error-prone. The VLAN Trunking Protocol (VTP) is a means whereby VLAN names and numbers can be managed at central devices, with the resulting configuration distributed automatically to other devices. Take, for example, the network shown in Figure 6-1. This typical three-tier network is composed completely of Layer-2 switches. There are 12 switches in all: 2 in the core, 4 in the distribution layer, and 6 in the access layer (a real network employing this design might have hundreds of switches).

Three-tier switched network

Figure 6-1. Three-tier switched network

Let’s assume the network has 10 VLANs throughout the entire design. That’s not so bad, right? Here’s what a 10-VLAN configuration might look like on a 2950:

vlan 10
 name IT
!
vlan 20
 name Personnel
!
vlan 30
 name Accounting
!
vlan 40
 name Warehouse1
!
vlan 50
 name Warehouse2
!
vlan 60
 name Shipping
!
vlan 70
 name MainOffice
!
vlan 80
 name Receiving
!
vlan 90
 name Lab
!
vlan 100
 name Production

Now, consider that every switch in the design needs to have information about every VLAN. To accomplish this, you’ll need to enter these commands exactly the same each time into every switch. Sure, you can copy the whole thing into a text file and paste it into each switch, but the process still won’t be fun. Look at the VLAN names. There are two warehouses, a lab, a main ...

The best content for your career. Discover unlimited learning on demand for around $1/day.