Cover by Edward Loper, Steven Bird, Ewan Klein

Safari, the world’s most comprehensive technology and business learning platform.

Find the exact information you need to solve a problem on the fly, or go deeper to master the technologies and skills you need to succeed

Start Free Trial

No credit card required

O'Reilly logo

Chapter 2. Accessing Text Corpora and Lexical Resources

Practical work in Natural Language Processing typically uses large bodies of linguistic data, or corpora. The goal of this chapter is to answer the following questions:

  1. What are some useful text corpora and lexical resources, and how can we access them with Python?

  2. Which Python constructs are most helpful for this work?

  3. How do we avoid repeating ourselves when writing Python code?

This chapter continues to present programming concepts by example, in the context of a linguistic processing task. We will wait until later before exploring each Python construct systematically. Don’t worry if you see an example that contains something unfamiliar; simply try it out and see what it does, and—if you’re game—modify it by substituting some part of the code with a different text or word. This way you will associate a task with a programming idiom, and learn the hows and whys later.

Accessing Text Corpora

As just mentioned, a text corpus is a large body of text. Many corpora are designed to contain a careful balance of material in one or more genres. We examined some small text collections in Chapter 1, such as the speeches known as the US Presidential Inaugural Addresses. This particular corpus actually contains dozens of individual texts—one per address—but for convenience we glued them end-to-end and treated them as a single text. Chapter 1 also used various predefined texts that we accessed by typing from book import *. However, since we ...

Find the exact information you need to solve a problem on the fly, or go deeper to master the technologies and skills you need to succeed

Start Free Trial

No credit card required