You are previewing Molecular Communication.
O'Reilly logo
Molecular Communication

Book Description

This comprehensive guide, by pioneers in the field, brings together, for the first time, everything a new researcher, graduate student or industry practitioner needs to get started in molecular communication. Written with accessibility in mind, it requires little background knowledge, and provides a detailed introduction to the relevant aspects of biology and information theory, as well as coverage of practical systems. The authors start by describing biological nanomachines, the basics of biological molecular communication and the microorganisms that use it. They then proceed to engineered molecular communication and the molecular communication paradigm, with mathematical models of various types of molecular communication and a description of the information and communication theory of molecular communication. Finally, the practical aspects of designing molecular communication systems are presented, including a review of the key applications. Ideal for engineers and biologists looking to get up to speed on the current practice in this growing field.

Table of Contents

  1. Cover
  2. Half-Title Page
  3. Title Page
  4. Copyright
  5. Contents
  6. Preface
  7. 1  Introduction
    1. 1.1  Molecular communication: Why, what, and how?
      1. 1.1.1  Why molecular communication?
      2. 1.1.2  What uses molecular communication?
      3. 1.1.3  How does it work? A quick introduction
    2. 1.2  A history of molecular communication
      1. 1.2.1  Early history and theoretical research
      2. 1.2.2  More recent theoretical research
      3. 1.2.3  Implementational aspects
      4. 1.2.4  Contemporary research
    3. 1.3  Applications areas
      1. 1.3.1  Biological engineering
      2. 1.3.2  Medical and healthcare applications
      3. 1.3.3  Industrial applications
      4. 1.3.4  Environmental applications
      5. 1.3.5  Information and communication technology applications
    4. 1.4  Rationale and organization of the book
    5. References
  8. 2  Nature-made biological nanomachines
    1. 2.1  Protein molecules
      1. 2.1.1  Molecularstructure
      2. 2.1.2  Functions and roles
    2. 2.2  DNA and RNA molecules
      1. 2.2.1  Molecularstructure
      2. 2.2.2  Functions and roles
    3. 2.3  Lipid membranes and vesicles
      1. 2.3.1  Molecularstructure
      2. 2.3.2  Functions and roles
    4. 2.4  Whole cells
    5. 2.5  Conclusion and summary
    6. References
  9. 3  Molecular communication in biological systems
    1. 3.1  Scales of molecular communication
    2. 3.2  Modes ofmolecular communication
    3. 3.3  Examples of molecular communication
      1. 3.3.1  Chemotactic signaling
      2. 3.3.2  Vesicular trafficking
      3. 3.3.3  Calcium signaling
      4. 3.3.4  Quorum sensing
      5. 3.3.5  Bacterial migration and conjugation
      6. 3.3.6  Morphogen signaling
      7. 3.3.7  Hormonal signaling
      8. 3.3.8  Neuronal signaling
    4. 3.4  Conclusion and summary
    5. References
  10. 4  Molecular communication paradigm
    1. 4.1  Molecular communication model
    2. 4.2  General characteristics
      1. 4.2.1  Transmission of information molecules
      2. 4.2.2  Information representation
      3. 4.2.3  Slow speed and limited range
      4. 4.2.4  Stochastic communication
      5. 4.2.5  Massive parallelization
      6. 4.2.6  Energy efficiency
      7. 4.2.7  Biocompatibility
    3. 4.3  Molecular communication network architecture
      1. 4.3.1  Physical layer
      2. 4.3.2  Link layer
      3. 4.3.3  Network layer
      4. 4.3.4  Upper layers and other issues
    4. 4.4  Conclusion and summary
    5. References
  11. 5  Mathematical modeling and simulation
    1. 5.1  Discrete diffusion and Brownian motion
      1. 5.1.1  Environmental assumptions
      2. 5.1.2  The Wiener process
      3. 5.1.3  Markov property
      4. 5.1.4  Wiener process with drift
      5. 5.1.5  Multi-dimensional Wiener processes
      6. 5.1.6  Simulation
    2. 5.2  Molecularmotors
    3. 5.3  First arrival times
      1. 5.3.1  Definition and closed-form examples
      2. 5.3.2  First arrival times in multiple dimensions
      3. 5.3.3  From first arrival times to communication systems
    4. 5.4  Concentration, mole fraction, and countingSmall numbers ofmolecules: Counting and inter-symbol interference
      1. 5.4.2  Large numbers of molecules: Towards concentration
      2. 5.4.3  Concentration: random and deterministic
      3. 5.4.4  Concentration as a Gaussian random variable
      4. 5.4.5  Concentration as a random process
      5. 5.4.6  Discussion and communication example
    5. 5.5  Models for ligand—receptor systems
      1. 5.5.1  Mathematical model of a ligand—receptor system
      2. 5.5.2  Simulation
    6. 5.6  Conclusion and summary
    7. References
  12. 6  Communication and information theory of molecular communication
    1. 6.1  Theoretical models for analysis of molecular communication
      1. 6.1.1  Abstract physical layer communication model
      2. 6.1.2  Ideal models
      3. 6.1.3  Distinguishable molecules: The additive inverse Gaussian noise channel
      4. 6.1.4  Indistinguishable molecules
      5. 6.1.5  Sequences in discrete time
    2. 6.2  Detection and estimation in molecular communication
      1. 6.2.1  Optimal detection and ML estimation
      2. 6.2.2  Parameter estimation
      3. 6.2.3  Optimal detection in the delay-selectorchannel
    3. 6.3  Information theory ofmolecular communication
      1. 6.3.1  A briefintroduction to information theory
      2. 6.3.2  Capacity
      3. 6.3.3  Calculating capacity: A simple example
      4. 6.3.4  Towards the general problem
      5. 6.3.5  Timing channels
    4. 6.4  Summary and conclusion
    5. References
  13. 7  Design and engineering of molecular communication systems
    1. 7.1  Protein molecules
      1. 7.1.1  Sender and receiverbio-nanomachines
      2. 7.1.2  Information molecules
      3. 7.1.3  Guide and transport molecules
    2. 7.2  DNA molecules
      1. 7.2.1  Sender and receiverbio-nanomachines
      2. 7.2.2  Information molecules
      3. 7.2.3  Interface molecules
      4. 7.2.4  Guide and transport molecules
    3. 7.3  Liposomes
      1. 7.3.1  Sender and receiverbio-nanomachines
      2. 7.3.2  Interface molecules
      3. 7.3.3  Guide molecules
    4. 7.4  Biological cells
      1. 7.4.1  Sender and receiver cells
      2. 7.4.2  Guide cells
      3. 7.4.3  Transport cells
    5. 7.5  Conclusion and summary
    6. References
  14. 8  Application areas of molecular communication
    1. 8.1  Drug delivery
      1. 8.1.1  Application scenarios
      2. 8.1.2  Example: Cooperative drug delivery
      3. 8.1.3  Example: Intracellular therapy
    2. 8.2  Tissue engineering
      1. 8.2.1  Application scenarios
      2. 8.2.2  Example: Tissue structure formation
    3. 8.3  Lab-on-a-chip technology
      1. 8.3.1  Application scenarios
      2. 8.3.2  Example: Bio-inspired lab-on-a-chip
      3. 8.3.3  Example: Smart dust biosensors
    4. 8.4  Unconventional computation
      1. 8.4.1  Application scenarios
      2. 8.4.2  Example: Reaction diffusion computation
      3. 8.4.3  Example: Artificial neural networks
      4. 8.4.4  Example: Combinatorial optimizers
    5. 8.5  Looking forward: Conclusion and summary
    6. References
  15. 9  Conclusion
    1. 9.1  Toward practical implementation
    2. 9.2  Toward the future: Demonstration projects
  16. Appendix    Review of probability theory
    1. A.1  Basic probability
    2. A.2  Expectation, mean, and variance
    3. A.3  The Gaussian distribution
    4. A.4  Conditional, marginal, and joint probabilities
    5. A.5  Markov chains
  17. Index