O'Reilly logo

Modeling and Analysis of Compositional Data by Vera Pawlowsky-Glahn, Juan Jose Egozcue, Raimon Tolosana-Delgado

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Chapter 7Statistical inference

7.1 Point estimation of center and variability

In Chapters 5 and 6, center and variability of a sample and a random composition were defined. In particular, the normal distribution on the simplex was characterized by the mean vector and covariance matrix of coordinates with respect to a given basis of the simplex (Section 6.3.1). It is thus pertinent to consider which is the relationship between these sample statistics and distributional parameters and, in particular, how the latter can be estimated. To cut a long story short, the center parameter is estimated with the sample center, the coordinate mean parameter with the sample c07-math-0001 mean, and the covariance matrix parameter with the sample c07-math-0002 covariance. The theory of parameter estimation is mainly based on the concept of likelihood function both in frequentist and Bayesian statistics (see, e.g., Jeffreys, 1961; Box and Tiao, 1973; Robert, 1994; Shao, 1998). The estimation of center and variability of a random composition can also be developed from this point of view.

In general, if a random variable c07-math-0003 follows a known probability model that depends on a vector of unknown parameters and a random sample

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required