You are previewing Microwave Circuit Design: A Practical Approach Using ADS.
O'Reilly logo
Microwave Circuit Design: A Practical Approach Using ADS

Book Description

Today’s Up-to-Date, Step-by-Step Guide to Designing Active Microwave Circuits

Microwave Circuit Design is a complete guide to modern circuit design, including simulation tutorials that demonstrate Keysight Technologies’ Advanced Design System (ADS), one of today’s most widely used electronic design automation packages. And the software-based circuit design techniques that Yeom presents can be easily adapted for any modern tool or environment.

Throughout, author Kyung-Whan Yeom uses the physical interpretation of basic concepts and concrete examples—not exhaustive calculations—to clearly and concisely explain the essential theory required to design microwave circuits, including passive and active device concepts, transmission line theory, and the basics of high-frequency measurement.

To bridge the gap between theory and practice, Yeom presents real-world, hands-on examples focused on key elements of modern communication systems, radars, and other microwave transmitters and receivers.

Practical coverage includes

  • Up-to-date microwave simulation design examples based on ADS and easily adaptable to any simulator

  • Detailed, step-by-step derivations of key design parameters related to procedures, devices, and performance

  • Relevant, hands-on problem sets in every chapter

  • Clear discussions of microwave IC categorization and roles; passive device impedances and equivalent circuits; coaxial and microstrip transmission lines; active devices (FET, BJT, DC Bias); and impedance matching

  • A complete, step-by-step introduction to circuit simulation using the ADS toolset and window framework

  • Low noise amplifier (LNA) design: gains, stability, conjugate matching, and noise circles

  • Power amplifier (PA) design: optimum load impedances, classification, linearity, and composite PAs

  • Microwave oscillator design: oscillation conditions, phase noise, basic circuits, and dielectric resonators

  • Phase lock loops (PLL) design: configuration, operation, components, and loop filters

  • Mixer design: specifications, Schottky diodes, qualitative analysis of mixers (SEM, SBM, DBM), and quantitative analysis of single-ended mixer (SEM)

  • Microwave Circuit Design brings together all the practical skills graduate students and professionals need to successfully design today’s active microwave circuits.

    Files now updated to accommodate the latest, 2014 version of the ADS. To download the update, please visit the Downloads section on the book's site: http://www.informit.com/title/9780134086781.

    Table of Contents

    1. About This eBook
    2. Title Page
    3. Copyright Page
    4. Dedication Page
    5. Contents
    6. Preface
    7. Acknowledgments
    8. About the Author
    9. Chapter 1. Microwave Integrated Circuits
      1. 1.1 Classification of Microwave Integrated Circuits
      2. 1.2 Microwave Circuits in a Communication System
      3. 1.3 Summary
      4. References
      5. Problems
    10. Chapter 2. Passive Devices
      1. 2.1 Impedances
      2. 2.2 Classification
      3. 2.3 Equivalent Circuits
        1. 2.3.1 Chip-Type Capacitors
        2. 2.3.2 Chip-Type Inductors
        3. 2.3.3 Chip-Type Resistors
      4. 2.4 Impedance Measurements
      5. 2.5 Summary
      6. References
      7. Problems
    11. Chapter 3. Transmission Lines
      1. 3.1 Introduction
      2. 3.2 Parameters
        1. 3.2.1 Phase Velocity
        2. 3.2.2 Wavelength
        3. 3.2.3 Characteristic Impedance
        4. 3.2.4 Measurements
      3. 3.3 Coaxial and Microstrip Lines
        1. 3.3.1 Coaxial Line
        2. 3.3.2 Microstrip Line
      4. 3.4 Sinusoidal Responses
        1. 3.4.1 Phasor Analysis
        2. 3.4.2 Reflection and Return Loss
        3. 3.4.3 Voltage Standing Wave Ratio (VSWR)
        4. 3.4.4 Smith Chart and Polar Chart
      5. 3.5 Applications
        1. 3.5.1 Short-Length Transmission Line
        2. 3.5.2 Resonant Transmission Line
        3. 3.5.3 Two-Port Circuit Application
      6. 3.6 Discontinuities
        1. 3.6.1 Open-End Microstrip
        2. 3.6.2 Step and Corner Discontinuities
        3. 3.6.3 T-Junction and Cross Junction
      7. 3.7 Summary
      8. References
      9. Problems
    12. Chapter 4. S-Parameters and Noise Parameters
      1. 4.1 S-Parameters
        1. 4.1.1 Voltage S-Parameter Definition
        2. 4.1.2 Definitions and Properties of S-Parameters
        3. 4.1.3 Ports and S-Parameter Simulation
        4. 4.1.4 S-Parameter Conversion
        5. 4.1.5 Shift of Reference Planes
        6. 4.1.6 Insertion Loss and Return Loss
        7. 4.1.7 Input Reflection Coefficient
      2. 4.2 Noise Parameters
        1. 4.2.1 Expression of Internal Noise
        2. 4.2.2 Representation of Noise Signals
        3. 4.2.3 Noise Figure
        4. 4.2.4 Expression of Noise Parameters
        5. 4.2.5 Frii’s Formula
        6. 4.2.6 Measurement of Noise Figure and Noise Parameters
      3. 4.3 File Formats
      4. 4.4 Summary
      5. References
      6. Problems
    13. Chapter 5. Introduction to Microwave Active Devices
      1. 5.1 Introduction
      2. 5.2 Field Effect Transistor (FET)
        1. 5.2.1 GaAs MESFET
        2. 5.2.2 Large-Signal Equivalent Circuit
        3. 5.2.3 Simplified Small-Signal Equivalent Circuit and S-Parameters
        4. 5.2.4 Package
        5. 5.2.5 GaAs pHEMT
      3. 5.3 Bipolar Junction Transistor (BJT)
        1. 5.3.1 Operation of an Si BJT
        2. 5.3.2 Large-Signal Model of a BJT
        3. 5.3.3 Simplified Equivalent Circuit and S-Parameters
        4. 5.3.4 Package
        5. 5.3.5 GaAs/AlGaAs HBT
      4. 5.4 DC Bias Circuits
        1. 5.4.1 BJT DC Bias Circuits
        2. 5.4.2 FET DC Bias Circuit Design
        3. 5.4.3 S-Parameter Simulation
      5. 5.5 Extraction of Equivalent Circuits
      6. 5.6 Summary
      7. References
      8. Problems
    14. Chapter 6. Impedance Matching
      1. 6.1 Introduction
      2. 6.2 Maximum Power Transfer Theorem
      3. 6.3 Discrete Matching Circuits
        1. 6.3.1 Series-to-Parallel Conversion
        2. 6.3.2 L-Type Matching Circuit
        3. 6.3.3 A π-Type Matching Circuit
        4. 6.3.4 T-Type Matching Circuit
        5. 6.3.5 Double L-Type Matching Circuit
        6. 6.3.6 Matching Circuit Design for a General Source Impedance
      4. 6.4 Transmission-Line Matching Circuits
        1. 6.4.1 Single-Stub Tuner
        2. 6.4.2 Impedance Inverter
      5. 6.5 Summary
      6. References
      7. Problems
    15. Chapter 7. Simulation and Layout
      1. 7.1 Simulation in ADS
      2. 7.2 Circuit Simulations
        1. 7.2.1 Classification of Circuit Simulations
        2. 7.2.2 DC Simulation
        3. 7.2.3 Transient Simulation
        4. 7.2.4 AC Simulation
        5. 7.2.5 Harmonic Balance Simulation
        6. 7.2.6 Multi-Tone Harmonic Balance
        7. 7.2.7 Optimization
      3. 7.3 Layout
        1. 7.3.1 Layout Example
        2. 7.3.2 Layer Preparation for Layout
        3. 7.3.3 Layout Units and Grid Set
        4. 7.3.4 Outline Setting
        5. 7.3.5 Component Layout
        6. 7.3.6 Layout Using Components
      4. 7.4 Momentum
        1. 7.4.1 Theory
        2. 7.4.2 Settings and EM Simulation
      5. 7.5 Summary
      6. References
      7. Problems
    16. Chapter 8. Low-Noise Amplifiers
      1. 8.1 Introduction
      2. 8.2 Gains
        1. 8.2.1 Definition of Input and Output Reflection Coefficients
        2. 8.2.2 Thevenin Equivalent Circuit
        3. 8.2.3 Power Gains
      3. 8.3 Stability and Conjugate Matching
        1. 8.3.1 Load and Source Stability Regions
        2. 8.3.2 Stability Factor
        3. 8.3.3 Conjugate Matching
      4. 8.4 Gain and Noise Circles
        1. 8.4.1 Gain Circles
        2. 8.4.2 Noise Circles
      5. 8.5 Summary of Gains and Circles
        1. 8.5.1 Summary of Gains
        2. 8.5.2 Summary of Circles
      6. 8.6 Design Example
        1. 8.6.1 Design Goal
        2. 8.6.2 Active Device Model
        3. 8.6.3 Device Performance
        4. 8.6.4 Selection of Source and Load Impedances
        5. 8.6.5 Matching Circuit Design
        6. 8.6.6 DC Supply Circuit
        7. 8.6.7 Stability
        8. 8.6.8 Fabrication and Measurements
      7. 8.7 Summary
      8. References
      9. Problems
    17. Chapter 9. Power Amplifiers
      1. 9.1 Introduction
      2. 9.2 Active Devices for Power Amplifiers
        1. 9.2.1 GaN HEMT
        2. 9.2.2 LDMOSFET
      3. 9.3 Optimum Load Impedances
        1. 9.3.1 Experimental Load-Pull Method
        2. 9.3.2 Load-Pull Simulation
      4. 9.4 Classification
        1. 9.4.1 Class-B and Class-C Power Amplifiers
        2. 9.4.2 Class-D Power Amplifiers
        3. 9.4.3 Class-E Power Amplifiers
        4. 9.4.4 Class-F Power Amplifiers
      5. 9.5 Design Example
        1. 9.5.1 Optimum Input and Output Impedances
        2. 9.5.2 Input and Output Matching Circuits
        3. 9.5.3 Design of Matching Circuits Using EM Simulation
      6. 9.6 Power Amplifier Linearity
        1. 9.6.1 Baseband Signal Modulation
        2. 9.6.2 Envelope Simulation
        3. 9.6.3 Two-Tone and ACPR Measurements
        4. 9.6.4 EVM Simulation
      7. 9.7 Composite Power Amplifiers
        1. 9.7.1 Predistorters
        2. 9.7.2 Feedforward Power Amplifiers (FPA)
        3. 9.7.3 EER (Envelope Elimination and Restoration)
        4. 9.7.4 Doherty Power Amplifier
      8. 9.8 Summary
      9. References
      10. Problems
    18. Chapter 10. Microwave Oscillators
      1. 10.1 Introduction
      2. 10.2 Oscillation Conditions
        1. 10.2.1 Oscillation Conditions Based on Impedance
        2. 10.2.2 Oscillation Conditions Based on the Reflection Coefficient
        3. 10.2.3 Start-Up and Equilibrium Conditions Based on Open-Loop Gain
      3. 10.3 Phase Noise
        1. 10.3.1 Spectrum of an Oscillation Waveform
        2. 10.3.2 Relationship between Phase Noise Spectrum and Phase Jitter
        3. 10.3.3 Leeson’s Phase Noise Model
        4. 10.3.4 Comparison of Oscillator Phase Noises
      4. 10.4 Basic Oscillator Circuits
        1. 10.4.1 Basic Oscillator Circuits
        2. 10.4.2 Conversion to Basic Forms
        3. 10.4.3 Design Method
      5. 10.5 Oscillator Design Examples
        1. 10.5.1 VCO for Mobile Communications
        2. 10.5.2 Microstrip Oscillator
      6. 10.6 Dielectric Resonators
        1. 10.6.1 Operation of Dielectric Resonator (DR)
        2. 10.6.2 Extraction of the Equivalent Circuit of a DR Coupled to a Microstrip
      7. 10.7 Dielectric Resonator Oscillators (DRO)
        1. 10.7.1 DRO Design Based on Replacement
        2. 10.7.2 Dielectric Resonator Oscillator Design Using Feedback
        3. 10.7.3 Comparison between the Two DRO Design Methods
      8. 10.8 Summary
      9. References
      10. Problems
    19. Chapter 11. Phase-Locked Loops
      1. 11.1 Introduction
      2. 11.2 Configuration and Operation of a PLL
      3. 11.3 PLL Components
        1. 11.3.1 Phase Detector
        2. 11.3.2 Frequency Divider
      4. 11.4 Loop Filters
        1. 11.4.1 Loop Filter
        2. 11.4.2 Second-Order Loop Filters
        3. 11.4.3 Implementation of a Second-Order Loop Filter
        4. 11.4.4 Measurement of a PLL
        5. 11.4.5 Higher-Order Loop Filters
      5. 11.5 PLL Simulation in ADS
        1. 11.5.1 Loop Filter Synthesis
        2. 11.5.2 Phase Noise Simulation
        3. 11.5.3 Transient Response Simulation
      6. 11.6 Summary
      7. References
      8. Problems
    20. Chapter 12. Mixers
      1. 12.1 Introduction
      2. 12.2 Specifications
        1. 12.2.1 Conversion Loss and 1-dB Compression Point
        2. 12.2.2 Mixer Isolation and VSWR
      3. 12.3 Schottky Diodes
        1. 12.3.1 Structure of the Schottky Diode
        2. 12.3.2 The Schottky Diode Package
        3. 12.3.3 Operating Principle of the Schottky Diode
      4. 12.4 Qualitative Analysis
        1. 12.4.1 Single-Ended Mixer (SEM)
        2. 12.4.2 Single-Balanced Mixer
        3. 12.4.3 Double-Balanced Mixer (DBM)
        4. 12.4.4 Comparison of Mixers
      5. 12.5 Quantitative Analysis of the SEM
        1. 12.5.1 LO Analysis of a Mixer
        2. 12.5.2 Small-Signal Analysis
        3. 12.5.3 Calculation of Mixer Parameters
      6. 12.6 Summary
      7. References
      8. Problems
    21. A. Appendix
      1. A. Units
      2. B. Cascaded Structure
      3. C. Half-Wave Rectifier Analysis Using Mathcad
        1. Harmonic Balance Calculation
      4. D. Large-Signal Impedance and Reflection Coefficient
      5. E. Mathematical Analysis of Negative Resistance
      6. F. Oscillation Conditions Based on Reflection Coefficients
    22. Index