You are previewing Microwave and Radar Engineering.
O'Reilly logo
Microwave and Radar Engineering

Book Description

Microwave and Radar Engineering presents the essential features of microwave and radar engineering. It focuses on the needs of students who take up the subject at undergraduate and postgraduate levels of electronics and communications engineering courses. Spread across 17 chapters, the book begins with a discussion of wave equations and builds upon the topics step by step with ample illustrations and examples that delineate the concepts to the student's benefit. The book will also come in handy for aspirants of competitive examinations.

Table of Contents

  1. Cover
  2. Title Page
  3. Contents
  4. Preface
  5. About the Authors
  6. Acknowledgements
  7. List of Symbols
  8. 1 Vector Analysis
    1. 1.1 Introduction
    2. 1.2 Scalar and Vector
      1. 1.2.1 Scalar Field
      2. 1.2.2 Vector Field
      3. 1.2.3 Unit Vector
    3. 1.3 Vector Algebra
      1. 1.3.1 Vector Addition and Vector Subtraction
      2. 1.3.2 Position and Distance Vectors
      3. 1.3.3 Vector Multiplication
    4. 1.4 Coordinate Systems
      1. 1.4.1 Cartesian Coordinate System
      2. 1.4.2 Cylindrical Coordinate System
      3. 1.4.3 Spherical Coordinate System
      4. 1.4.4 Conversion of Vector between the Coordinate Systems
    5. 1.5 Vector Calculus
      1. 1.5.1 Differential Length, Area and Volume
      2. 1.5.2 Line, Surface and Volume Integrals
      3. 1.5.3 Del Operator ?
      4. 1.5.4 Gradient of a Scalar Field
      5. 1.5.5 Divergence of a Vector Field
      6. 1.5.6 Divergence Theorem
      7. 1.5.7 Curl of a Vector Field
      8. 1.5.8 Stokes’s Theorem
      9. 1.5.9 Laplacian of a Scalar
    6. Summary
    7. Objective-type Questions
    8. Answers to Objective-type Questions
    9. Review Questions
  9. 2 Review of Maxwell’s Equations and EM Wave Characteristics
    1. 2.1 Introduction
    2. 2.2 Faraday’s Law of Induction
    3. 2.3 Transformer EMF
    4. 2.4 Inconsistency of Ampere’s Law
    5. 2.5 Displacement Current Density and Proof of Modified Ampere’s Law
      1. 2.5.1 Example of Displacement Current
    6. 2.6 Maxwell’s Equations in Different Forms
      1. 2.6.1 Maxwell’s Equations in Differential Form for Time-varying Fields
      2. 2.6.2 Integral Form of Maxwell’s Equations for Time-varying Fields
      3. 2.6.3 Maxwell’s Equations for Harmonically Varying Fields
    7. 2.7 Maxwell’s Equations in Different Media
      1. 2.7.1 Maxwell’s Equations for Free Space
      2. 2.7.2 Maxwell’s Equations for Good Conductors
      3. 2.7.3 Maxwell’s Equations in Lossless or Non-conducting Medium
      4. 2.7.4 Maxwell’s Equations in Charge-free/Current-free Medium
      5. 2.7.5 Maxwell’s Equations for Static Field
    8. 2.8 Boundary Conditions at a Surface
      1. 2.8.1 Boundary Conditions at the Interface between Dielectric and Dielectric
      2. 2.8.2 Boundary Conditions at Interface of Dielectric and Perfect Conductor
    9. 2.9 Wave Equation
      1. 2.9.1 Wave Equation for a Conducting Media
      2. 2.9.2 Wave Equation for Perfect Dielectric Media
      3. 2.9.3 Wave Equation for Free Space
    10. 2.10 Uniform Plane Waves
      1. 2.10.1 Uniform Plane Wave Definition
      2. 2.10.2 Relationship between E and H in a Uniform Plane Wave
      3. 2.10.3 Sinusoidal Variations
    11. 2.11 Wave Propagation
      1. 2.11.1 Derivation of ?Values of Attenuation Constant and Phase Shift Constant
      2. 2.11.2 Intrinsic Impedance
    12. 2.12 Polarization
      1. 2.12.1 Linear Polarization
      2. 2.12.2 Circular Polarization
      3. 2.12.3 Elliptical Polarization
    13. 2.13 Poynting Vector and Poynting Theorem
      1. 2.13.1 Average Power through a Surface
      2. 2.13.2 Application of Poynting Theorem
      3. 2.14 Power Loss in a Plane Conductor
    14. Summary
    15. Objective-type Questions
    16. Answers to Objective-type Questions
    17. Review Questions
  10. 3 Review of Transmission Lines
    1. 3.1 Introduction
      1. 3.1.1 Definition of ?Transmission Lines
      2. 3.1.2 Types of Transmission Lines
    2. 3.2 Lumped Versus Distributed Element Circuits
      1. 3.2.1 Transmission-Line Parameters
    3. 3.3 Transmission Line Equations
    4. 3.4 Primary and Secondary Constants
    5. 3.5 Characteristic Impedence (Z0)
      1. 3.5.1 Voltage and Current at any Given Point on the Transmission Line in Terms of Characteristic Impedance
      2. 3.5.2 Voltage and Current at any Given Point on the Transmission Line in Terms of Reflection Coefficent
      3. 3.5.3 Input Impedence of a Uniform Transmission Line
    6. 3.6 Input Impedance Relations
      1. 3.6.1 Short Circuited Line (ZL = 0)
      2. 3.6.2 Open Circuited Line (ZL = 8)
      3. 3.6.3 Matched line (ZL = Z0)
    7. 3.7 Reflection Coefficient of a Transmission Line
      1. 3.7.1 Voltage Reflection Coefficient
      2. 3.7.2 Derivation of Input Impedance in terms of Reflection Coefficient
    8. 3.8 Standing Wave Ratio
      1. 3.8.1 Voltage Standing Wave Ratio
      2. 3.8.2 Current Standing Wave Ratio
    9. 3.9 Smith Chart
    10. 3.10 Impedance Matching
      1. 3.10.1 Quarter-wave Transformer
    11. Summary
    12. Objective-type Questions
    13. Answers to Objective-type Questions
    14. Review Questions
  11. 4 Introduction to Microwave Engineering
    1. 4.1 Introduction
    2. 4.2 History of Microwave Technology
    3. 4.3 Microwave Spectrum and Bands
      1. 4.3.1 Microwave Frequency Band Designations
      2. 4.3.2 IEEE Frequency Band Designations
    4. 4.4 Advantages of Microwaves
    5. 4.5 Applications of Microwaves
    6. Summary
    7. Objective-type Questions
    8. Answers to Objective-type Questions
    9. Review Questions
  12. 5 Waveguides
    1. 5.1 Introduction
    2. 5.2 Types of Waveguides
    3. 5.3 Rectangular Waveguides
      1. 5.3.1 Field Equations in a Rectangular Waveguide
      2. 5.3.2 Cut-off Frequencies of Rectangular Waveguides
      3. 5.3.3 Filter Characteristics
      4. 5.3.4 Wave Impedance in a Rectangular Waveguide
      5. 5.3.5 Dominant Mode and Degenerate Modes
      6. 5.3.6 Sketches of TE and TM Mode Fields in the Cross-Section
      7. 5.3.7 Excitation of Modes in Rectangular Waveguides
      8. 5.3.8 Mode Characteristics of Phase Velocity (vp)
      9. 5.3.9 Mode Characteristics of Group Velocity (vg)
      10. 5.3.10 Wavelength and Impedance Relations
      11. 5.3.11 Power Transmission in a Rectangular Waveguide
      12. 5.3.12 Transmission Losses in a Rectangular Waveguide
    4. 5.4 Circular Waveguide
      1. 5.4.1 Field Components of TE Waves
      2. 5.4.2 Field Components of TM Waves
      3. 5.4.3 Characteristic Equation and Cut-off Frequency of a Circular Waveguide
      4. 5.4.4 Dominant Mode and Degenerate Modes
      5. 5.4.5 Sketches of TE and TM Mode Fields in the Cross-Section
      6. 5.4.6 Excitation of Modes in Circular Waveguides
      7. 5.4.7 Advantages and Disadvantages
    5. 5.5 Cavity Resonators
      1. 5.5.1 Types of Cavity Resonators
      2. 5.5.2 Rectangular Cavity Resonators
      3. 5.5.3 Circular Cavity Resonators
      4. 5.5.4 Applications of Cavity Resonators
      5. 5.5.5 Quality Factor (Q) and Coupling Coefficient
    6. 5.6 Microstrip Lines
      1. 5.6.1 Characteristic Impedance (Z0) of Microstrip Lines
      2. 5.6.2 Effective Dielectric Constant (εre)
      3. 5.6.3 Transformation of a Rectangular Conductor into an Equivalent Circular Conductor
      4. 5.6.4 Losses in Microstrip Lines
      5. 5.6.5 Quality Factor (Q) of Microstrip Lines
    7. Summary
    8. Objective-type Questions
    9. Answers to Objective-Type Questions
    10. Review Questions
  13. 6 Waveguide Components
    1. 6.1 Introduction
    2. 6.2 Coupling Mechanisms
      1. 6.2.1 Probes
      2. 6.2.2 Loops
      3. 6.2.3 Coupling to a Cavity Resonator
    3. 6.3 Waveguide Discontinuities
      1. 6.3.1 Waveguide Irises
      2. 6.3.2 Tuning Screws and Posts
      3. 6.3.3 Matched Loads
    4. 6.4 Waveguide Attenuators
      1. 6.4.1 Fixed Attenuators
      2. 6.4.2 Variable Attenuators
    5. 6.5 Waveguide Phase Shifters
      1. 6.5.1 Fixed Phase Shifters
      2. 6.5.2 Variable Phase Shifters
    6. 6.6 Waveguide Multiport Junctions
      1. 6.6.1 Microwave or Waveguide Junctions
      2. 6.6.2 Microwave TEE Junctions
      3. 6.6.3 Hybrid Ring (Rat Race Junction)
    7. 6.7 Directional Couplers
      1. 6.7.1 Two-Hole Directional Couplers
      2. 6.7.2 Bethe-hole Directional Couplers
      3. 6.7.3 Applications of Directional Couplers
    8. 6.8 Ferrites
      1. 6.8.1 Faraday Rotation Principle
      2. 6.8.2 Composition and Characteristics of Ferrites
    9. 6.9 Ferrite Components
      1. 6.9.1 Faraday Rotation-Based Gyrator
      2. 6.9.2 Faraday Rotation-Based Isolator
      3. 6.9.3 Faraday Rotation-Based Circulator
    10. 6.10 Waveguide Bends and Joints
      1. 6.10.1 Waveguide Bends
      2. 6.10.2 Waveguide Joints (Flanges)
    11. Summary
    12. Objective-type Questions
    13. Answers to Objective-type Questions
    14. Review Questions
  14. 7 Scattering Matrix for Waveguide Components
    1. 7.1 Introduction
    2. 7.2 Significance of Scattering Parameters (S parameters)
    3. 7.3 Formulation of S Matrix
    4. 7.3.1 S-Parameter Evaluation
    5. 7.3.2 S Parameters for n Ports
  15. 7.4 Properties of a Scattering Matrix
    1. 7.5 Scattering Matrix Calculations for 3-port Junction
      1. 7.5.1 E-Plane Tee
      2. 7.5.2 H-Plane Tee
    2. 7.6 Scattering Matrix Calculations for 4-port Junction
      1. 7.6.1 Magic Tee
      2. 7.6.2 Directional Couplers
      3. 7.6.3 Rat-Race Coupler or Hybrid Ring Coupler
    3. 7.7 Scattering Matrix Calculations for Ferrite Components
      1. 7.7.1 Gyrators
      2. 7.7.2 Circulators
      3. 7.7.3 Isolators
      4. 7.7.4 S Matrix for an Ideal Attenuator
      5. 7.7.5 S Matrix for an Ideal Amplifier
      6. 7.7.6 S Matrix for an Ideal Transmission Line of Length L
      7. 7.7.7 S Matrix for an Ideal Phase Shifter
    4. 7.8 Characterizing the Network Using Z, Y, h and ABCD Parameters
      1. 7.8.1 Z Parameters
      2. 7.8.2 Y Parameters
      3. 7.8.3 h-Parameters
      4. 7.8.4 ABCD Parameters
      5. 7.8.5 Parameter Conversion
    5. Summary
    6. Objective-type Questions
    7. Answers To Objective-Type Questions
    8. Review Questions
  16. 8 Microwave Tubes
    1. 8.1 Introduction
    2. 8.2 Limitations of Conventional Tubes at Microwave Frequencies
      1. 8.2.1 Inter-electrode Capacitance Effect
      2. 8.2.2 Lead Inductance Effect
      3. 8.2.3 Transit-time Effect
      4. 8.2.4 Gain Bandwidth Product Limitation
    3. 8.3 Re-entrant Cavities
    4. 8.4 Classification of Microwave Tubes
    5. 8.5 Linear Beam (O Type) Tubes
    6. 8.6 Two-cavity Klystron Amplifier
      1. 8.6.1 Structure of? Two-Cavity Klystron
      2. 8.6.2 Velocity-modulation Process and Applegate Diagram
      3. 8.6.3 Bunching Process and Small Signal Theory
      4. 8.6.4 Expressions for Output Power and Efficiency
    7. 8.7 Multi-cavity Klystron
    8. 8.8 Reflex Klystron
      1. 8.8.1 Structure of Reflex Klystron
      2. 8.8.2 Applegate Diagram and Principle of Working
      3. 8.8.3 Mathematical Theory of Bunching
      4. 8.8.4 Power Output and Efficiency
      5. 8.8.5 Electronic Admittance
      6. 8.8.6 Oscillating Modes and Output Characteristics
      7. 8.8.7 Electronic and Mechanical Tuning
    9. 8.9 Traveling-wave Tube
      1. 8.9.1 Significance of TWT
      2. 8.9.2 Types and Characteristics of Slow-wave Structures
      3. 8.9.3 Structure of TWT and Amplification Process
      4. 8.9.4 Suppression of Oscillations
      5. 8.9.5 Nature of the Four Propagation Constants
      6. 8.9.6 Gain Considerations
    10. 8.10 Backward-wave Oscillators
    11. 8.11 M-Type Tubes
      1. 8.11.1 Cross-Field Effects
    12. 8.12 Magnetrons
      1. 8.12.1 Types of Magnetrons
      2. 8.12.2 8-cavity Cylindrical Magnetron
      3. 8.12.3 Modes of Resonance and p Mode Operation
      4. 8.12.4 Hull Cut-Off Voltage Equation
      5. 8.12.5 Hartree Condition
      6. 8.12.6 Separation of p Mode
      7. 8.12.7 Sustained Oscillations in Magnetrons
    13. 8.13 Crossed-field Amplifiers
    14. Summary
    15. Objective-type Questions
    16. Answers to Objective-type Questions
    17. Review Questions
  17. 9 Microwave Solid-state Devices
    1. 9.1 Introduction
    2. 9.2 Negative Resistance Phenomenon
    3. 9.3 Classification of Solid-state Devices
    4. 9.4 Applications of Solid-state Devices
    5. 9.5 Transferred Electron Devices (TEDs)
    6. 9.6 Gunn Diode
      1. 9.6.1 Operation and Characteristics of Gunn Diode
      2. 9.6.2 Domain Formation
      3. 9.6.3 RWH Theory or Two-valley Theory of Gunn Diode
      4. 9.6.4 Equivalent Circuit of Gunn Diode
      5. 9.6.5 Basic Modes of Operation
      6. 9.6.6 Applications of Gunn Diode
    7. 9.7 Tunnel Diodes
    8. 9.8 Avalanche Transit Time Devices
    9. 9.9 IMPATT Diode
      1. 9.9.1 Principle of Operation of IMPATT Diode
      2. 9.9.2 Characteristics of IMPATT Diode
    10. 9.10 TRAPATT Diode
    11. 9.11 BARITT Diode
    12. 9.12 PIN Diode
    13. 9.13 Schottky Diode
    14. 9.14 Varactor Diode
    15. 9.15 Parametric Amplifiers
    16. 9.16 Step-recovery Diode
    17. 9.17 Crystal Diode
    18. 9.18 Microwave BJTs
    19. 9.19 Microwave FETs
    20. Summary
    21. Objective-type Questions
    22. Answers to Objective-type Questions
    23. Review Questions
  18. 10 Monolithic Microwave Integrated Circuits
    1. 10.1 Introduction
    2. 10.2 Microwave Integrated Circuits (MICs)
    3. 10.3 Advantages and Disadvantages of MMICs
    4. 10.4 Comparison of MMICs with hmics
    5. 10.5 Applications of MMICs
    6. 10.6 Materials used for MMICs
      1. 10.6.1 Substrate Materials
      2. 10.6.2 Conductor Materials
      3. 10.6.3 Dielectric Materials
      4. 10.6.4 Resistive Materials
    7. 10.7 Growth of MMICs
      1. 10.7.1 Fabrication Techniques
    8. 10.8 MOSFET Fabrication
    9. 10.8.1 MOSFET Formation
      1. 10.8.2 NMOS Fabrication Process (or) Growth
      2. 10.8.3 CMOS Fabrication Process (or) Development
    10. 10.9 Thin-film Formation
    11. 10.9.1 Planar Resistor Films
      1. 10.9.2 Planar Inductor Films
      2. 10.9.3 Planar Capacitor Films
    12. Summary
    13. Objective-type Questions
    14. Answers to Objective-type Questions
    15. Review Questions
  19. 11 Microwave Measurements
    1. 11.1 Introduction
    2. 11.2 Description of Microwave Bench
      1. 11.2.1 Description of Blocks of Microwave Bench and their Features
      2. 11.2.2 Precautions
    3. 11.3 Microwave Power Measurement
    4. 11.4 Microwave Attenuation Measurement
      1. 11.4.1 Power Ratio Method
      2. 11.4.2 RF Substitution Method
    5. 11.5 Microwave Frequency Measurements
      1. 11.5.1 Slotted-line Method (Mechanical Technique)
      2. 11.5.2 Electronic Technique
    6. 11.6 Microwave VSWR Measurement
      1. 11.6.1 Measurement of Low VSWR (S <
      2. 11.6.2 Measurement of High VSWR(S >
    7. 11.7 Measurement of Q of a Cavity Resonator
    8. 11.8 Impedance Measurement
      1. 11.8.1 Measurement of Impedance Using a Slotted Line
    9. Solved Problems
    10. Summary
    11. Objective-type Questions
    12. Answers to Objective-type Questions
    13. Review Questions
  20. 12 Introduction to Radars
    1. 12.1 Introduction
    2. 12.2 History of Radars, Frequencies, and Applications of Radars
    3. 12.3 Classification of Radars
      1. 12.3.1 Classification of Radars Based on Role of ?Targets During Detection Process
      2. 12.3.2 Classification of Radars Based on How Transmitting and Receiving Antennas are Employed
      3. 12.3.3 Classification of Radars Based on Waveforms Used
      4. 12.3.4 Classification of Radars Based on Services Provided
    4. 12.4 Basic Radars
      1. 12.4.1 Radar Range Equation
    5. 12.5 Radar Block Diagram
      1. 12.5.1 Pulse Characteristics
      2. 12.5.2 Radar Cross-Section of ?Target (RCS)
      3. 12.5.3 Radar Antennas
      4. 12.5.4 Information Available from Radars
    6. 12.6 Pulse Radar Characteristics
      1. 12.6.1 Minimum Range
      2. 12.6.2 Maximum Range
      3. 12.6.3 Radar Resolution
    7. 12.7 Radome
    8. Summary
    9. Objective-type Questions
    10. Answers to Objective-type Questions
    11. Review Questions
  21. 13 CW Radar, FMCW Radar, and Pulse Radar
    1. 13.1 Introduction
    2. 13.2 CW Radar
    3. 13.3 FMCW Radar
    4. 13.4 Pulse Radar
    5. Summary
    6. Objective-type Questions
    7. Answers to Objective-type Questions
    8. Review Questions
  22. 14 MTI and Pulse Doppler Radars
    1. 14.1 Introduction
    2. 14.2 Introduction to Pulse, MTI, and Pulse Doppler Radars
      1. 14.2.1 Doppler Frequency
      2. 14.2.2 Doppler Processing in CW, MTI, and PDRs
      3. 14.2.3 MTI and Pulse Doppler Radar Transmitted Pulses and Pulse Processing
    3. 14.3 MTI Radars
    4. 14.4 Delay Line Cancellers or Pulse Cancellers
      1. 14.4.1 Blind Speeds
    5. 14.5 Staggered PRFs to Increase Blind Speed
    6. 14.6 Double Delay Line Canceller
    7. 14.7 MTI Radar Performance Analysis
    8. 14.8 Types of MTI radars
      1. 14.8.1 Non-Coherent MTI Radars
      2. 14.8.2 Coherent MTI Radars
      3. 14.8.3 Limitations to MTI Performance
    9. 14.9 Pulse Doppler Radars
    10. 14.10 Moving Target Detector (MTD)
      1. 14.10.1 Comparison of Moving Target Indicator and MTD
    11. Summary
    12. Objective-type Questions
    13. Answers to Objective-type Questions
    14. Review Questions
  23. 15 Tracking Radars
    1. 15.1 Introduction ?
    2. 15.2 Search and Tracking Radar System
      1. 15.2.1 Search Radar System
      2. 15.2.2 Tracking Radar System
      3. 15.2.3 Differences Between Search and Tracking Radar
    3. 15.3 Various Scanning and Tracking Techniques
    4. 15.4 Range Tracking
    5. 15.5 Angle Tracking
      1. 15.5.1 Sequential Lobing
      2. 15.5.2 Conical Scan
      3. 15.5.3 Monopulse Tracking
      4. 15.5.4 Velocity Tracking
      5. 15.6 Tracking Accuracy ?
      6. 15.6.1 Limitations of Tracking Accuracy of Radars
    6. 15.7 Frequency Agility
    7. 15.8 Track While Scan (TWS)
    8. 15.9 Phased Array Radars
    9. 15.10 Radar Displays
    10. Summary
    11. Objective-type Questions
    12. Answers to Objective-type Questions
    13. Review Questions
  24. 16 Detection of Signals in Noise and Radar Receivers
    1. 16.1 Introduction
    2. 16.2 Matched-Filter Receiver
    3. 16.3 Correlation Detection
    4. 16.4 Detection Criteria
    5. 16.5 Automatic Detection
    6. 16.6 Minimal Detectable Signal in the Presence of Receiver Noise
    7. 16.7 Constant False Alarm Rate (CFAR) Receiver
      1. 16.7.1 Cell-Averaging CFAR (CA-CFAR)
    8. 16.8 Detectors
    9. 16.9 Various Noise Components
      1. 16.9.1 Noise Factor (NF)
      2. 16.9.2 Noise Figure
      3. 16.9.3 Noise Temperature
      4. 16.9.4 System Noise Temperature
    10. 16.10 Duplexer
      1. 16.10.1 Balanced Duplexer
      2. 16.10.2 Branched Type Duplexers
    11. 16.11 Introduction to Phased Array Antennas
    12. 16.12 Parallel- and Serial-Feed Array
    13. 16.13 Radiation Pattern of Phased Array Antennas
    14. 16.14 Beamwidth
    15. 16.15 Beam Steering
    16. 16.16 Applications of Phased Array Antennas
    17. 16.17 Advantages and Disadvantages of Phased Array Antennas
    18. Summary
    19. Objective-Type Questions
    20. Answers to Objective Type Questions
    21. Review Questions
  25. 17 Microwave Experiments
    1. 17.1 Introduction
    2. 17.2 Reflex Klystron Characteristics
    3. 17.3 Gunn Diode Characteristics
    4. 17.4 Measurement of Attenuation
    5. 17.5 Measurement of Frequency and Wavelength
    6. 17.6 Directional Coupler Characteristics
    7. 17.7 Horn Antenna Radiation Pattern
    8. 17.8 Magic Tee Characteristics
    9. 17.9 VSWR Measurement
    10. 17.10 Impedance Measurement using Reflex Klystron
    11. Summary
  26. Appendix A Glossary of Terms
  27. Appendix B The Decibel [dB]
  28. Appendix C Doppler Frequency Shift
  29. Appendix D Physical Constants, Factors for Converting Measurements, and Measurement Unit Prefixes
  30. Appendix E Manley-Rowe Relations
  31. Abbreviations
  32. Bibliography