You are previewing Microsystems for Bioelectronics, 2nd Edition.
O'Reilly logo
Microsystems for Bioelectronics, 2nd Edition

Book Description

The advances in microsystems offer new opportunities and capabilities to develop systems for biomedical applications, such as diagnostics and therapy. There is a need for a comprehensive treatment of microsystems and in particular for an understanding of performance limits associated with the shrinking scale of microsystems. The new edition of Microsystems for Bioelectronics addresses those needs and represents a major revision, expansion and advancement of the previous edition.

This book considers physical principles and trends in extremely scaled autonomous microsystems such as integrated intelligent sensor systems, with a focus on energy minimization. It explores the implications of energy minimization on device and system architecture. It further details behavior of electronic components and its implications on system-level scaling and performance limits. In particular, fundamental scaling limits for energy sourcing, sensing, memory, computation and communication subsystems are developed and new applications such as optical, magnetic and mechanical sensors are presented.

The new edition of this well-proven book with its unique focus and interdisciplinary approach shows the complexities of the next generation of nanoelectronic microsystems in a simple and illuminating view, and is aimed for a broad audience within the engineering and biomedical community.

Table of Contents

  1. Cover
  2. Title page
  3. Table of Contents
  4. Copyright
  5. Preface—Second Edition
  6. Chapter 1: The nanomorphic cell: atomic-level limits of computing
    1. Abstracts
    2. List of Acronyms
    3. 1.1. Introduction
    4. 1.2. Electronic Scaling
    5. 1.3. Nanomorphic Cell: Atomic Level Limits of Computing
    6. 1.4. The Nanomorphic Cell vis-à-vis the Living Cell
    7. 1.5. Cell Parameters: Mass, Size, and Energy
    8. 1.6. Current Status of Technologies for Autonomous Microsystems
    9. 1.7. Summary
    10. 1.8. Appendix
  7. Chapter 2: Basic physics of ICT
    1. Abstract
    2. List of Acronyms
    3. 2.1. Introduction
    4. 2.2. A Central Concept: Energy Barrier
    5. 2.3. Physical Origin of The Barrier Potential in Materials Systems
    6. 2.4. Two-Sided Barrier
    7. 2.5. Model Case: An Electrical Capacitor
    8. 2.6. Barrier Transitions
    9. 2.7. Quantum Confinement
    10. 2.8. Quantum Conductance
    11. 2.9. Electron Transport in the Presence of Barriers
    12. 2.10. Barriers in Semiconductors
    13. 2.11. Summary
  8. Chapter 3: Energy in the small: micro-scale energy sources
    1. Abstract
    2. List of Acronyms
    3. 3.1. Introduction
    4. 3.2. Storage Capacitor
    5. 3.3. Electrochemical Energy: Fundamentals of Galvanic Cells
    6. 3.4. Miniature Supercapacitors
    7. 3.5. Energy from Radioisotopes
    8. 3.6. Remarks on Energy Harvesting
    9. 3.7. Summary
    10. 3.8. Appendix. A Kinetic Model to Assess the Limits of Heat Removal
  9. Chapter 4: Fundamental limits for logic and memory
    1. Abstract
    2. List of Acronyms
    3. 4.1. Introduction
    4. 4.2. Information and Information Processing
    5. 4.3. Basic Physics of Binary Elements
    6. 4.4. System-level Analysis
    7. 4.5. Summary
    8. 4.6. Appendix. Derivation of Electron Travel Time (Eq. 4.58)
  10. Chapter 5: A severely scaled information processor
    1. Abstract
    2. List of Acronyms
    3. 5.1. Introduction
    4. 5.2. Information: a Quantitative Treatment
    5. 5.3. Abstract Information Processor
    6. 5.4. Concluding Remarks
    7. 5.5. Appendix: Choice of Probability Values to Maximize the Entropy Function
  11. Chapter 6: Sensors at the micro-scale
    1. Abstract
    2. List of Acronyms
    3. 6.1. Introduction
    4. 6.2. Sensor Basics
    5. 6.3. Analog Signal
    6. 6.4. Fundamental Sensitivity Limit of Sensors: Thermal Noise
    7. 6.5. What Information can be Obtained from Cells?
    8. 6.6. Sensors of Bioelectricity
    9. 6.7. Chemical and Biochemical Sensors
    10. 6.8. Thermal Biosensors
    11. 6.9. Optical Biosensors
    12. 6.10. Summary
    13. 6.11. Glossary of Biological Terms
  12. Chapter 7: Nanomorphic cell communication unit
    1. Abstract
    2. List of Acronyms
    3. 7.1. Introduction
    4. 7.2. EM Radiation
    5. 7.3. Basic RF Communication System
    6. 7.4. EM Transducer: A Linear Antenna
    7. 7.5. Free-space Single-Photon Limit for Energy in EM Communication
    8. 7.6. Thermal Noise Limit on Communication Spectrum
    9. 7.7. The THz Communication Option (λ <img xmlns="http://www.w3.org/1999/xhtml" xmlns:epub="http://www.idpf.org/2007/ops" src="images/2A7E.png" alt=""></img> 100 &#956;m) 100 μm)
    10. 7.8. Wireless Communication for Biomedical Applications
    11. 7.9. Optical Wavelength Communication Option (λ ∼ 1 μm)
    12. 7.10. Status of μ-scaled LEDs and PDs
    13. 7.11. Summary
  13. Chapter 8: Micron-sized systems: in carbo vs. <span xmlns="http://www.w3.org/1999/xhtml" xmlns:epub="http://www.idpf.org/2007/ops" class="italic">in silico</span>
    1. Abstract
    2. List of Acronyms
    3. 8.1. Introduction
    4. 8.2. The Living Cell as a Turing Machine
    5. 8.3. The Nanomorphic (<span xmlns="http://www.w3.org/1999/xhtml" xmlns:epub="http://www.idpf.org/2007/ops" class="italic">in Silico</span>) Cell) Cell
    6. 8.4. The Living (in Carbo) Cell
    7. 8.5. Benchmarks: in Carbo versus <span xmlns="http://www.w3.org/1999/xhtml" xmlns:epub="http://www.idpf.org/2007/ops" class="italic">in Silico</span> Processors Processors
    8. 8.6. Operational Characteristics of a 10-μm ICT System
    9. 8.7. Design Secrets of an in Carbo System
    10. 8.8. ICT and Biology: Opportunities for Synergy
    11. 8.9. Summary
  14. Concluding Remarks
  15. Index