You are previewing Measurements using Optic and RF Waves.
O'Reilly logo
Measurements using Optic and RF Waves

Book Description

Scientific and technical knowledge for measurements in modern electromagnetism must be vast as our electromagnetic environment covers all frequencies and wavelengths. These measurements must be applied to fields as varied as nanotechnologies, telecommunications, meteorology, geolocalization, radioastronomy, health, biology, etc. In order to cover the multiple facets of the topic, this book sweeps the entire electromagnetic spectrum, from several hertz to terahertz; considers distances ranging from nanometers to light-years in optics; before extending towards the various measurement techniques using electromagnetic waves for various applications. This book describes these different facets in eleven chapters, each covering different domains of applications.

Table of Contents

  1. Cover
  2. Title Page
  3. Copyright
  4. Preface
  5. Chapter 1: Electromagnetic Environment
    1. 1.1. Electromagnetic radiation sources
      1. 1.1.1. Optical sources
        1. 1.1.1.1. Solar radiation
        2. 1.1.1.2. Artificial optical sources
          1. 1.1.1.2.1. Lighting
          2. 1.1.1.2.2. Screens
          3. 1.1.1.2.3. Lasers
      2. 1.1.2. Radioelectric sources
        1. 1.1.2.1. Radiation sources of natural origin
          1. 1.1.2.1.1. Electromagnetic radiation of the sun
          2. 1.1.2.1.2. Galactic sources
          3. 1.1.2.1.3. Atmospheric source
          4. 1.1.2.1.4. Summary of the natural electromagnetic environment
        2. 1.1.2.2. Man-made electromagnetic environment
          1. 1.1.2.2.1. Domestic sources of electromagnetic fields
          2. 1.1.2.2.2. Industrial sources of electromagnetic fields
          3. 1.1.2.2.3. Broadcast and television transmitters
          4. 1.1.2.2.4. Portable electronic devices
          5. 1.1.2.2.5. Telecommunications
          6. 1.1.2.2.6. Radars
          7. 1.1.2.2.7. Railway trains
        3. 1.1.2.3. Scientific and medical sources of electromagnetic fields
      3. 1.1.3. Indoor and outdoor electric wires
      4. 1.1.4. Fields resulting from all the emissions
    2. 1.2. Electromagnetic fields
    3. 1.3. Bibliography
  6. Chapter 2: From Measurement to Control of Electromagnetic Waves using a Near-field Scanning Optical Microscope
    1. 2.1. Introduction
    2. 2.2. Principle of the measurement using a local probe
      1. 2.2.1. Overcoming Rayleigh’s limit
      2. 2.2.2. Classification of the experimental set-up
      3. 2.2.3. Probe motion above a sample
      4. 2.2.4. Aperture microscope in collection mode under constant distance mode
        1. 2.2.4.1. Description of the experimental set-up
        2. 2.2.4.2. Collection of the light
    3. 2.3. Measurement of the electromagnetic field distribution inside nanophotonic components
      1. 2.3.1. W1 photonic crystal waveguide
      2. 2.3.2. Photonic crystal microcavity
    4. 2.4. Measuring the amplitude and phase in optical near-field
    5. 2.5. Active optical near-field microscopy
    6. 2.6. Conclusion
    7. 2.7. Acknowledgements
    8. 2.8. Bibliography
  7. Chapter 3: Meteorological Visibility Measurement: Meteorological Optical Range
    1. 3.1. Introduction
    2. 3.2. Definitions
    3. 3.3. Atmospheric composition
      1. 3.3.1. Gaseous composition
      2. 3.3.2. Aerosols
    4. 3.4. Atmospheric effects on light propagation
      1. 3.4.1. Atmospheric absorption
      2. 3.4.2. Atmospheric scattering
      3. 3.4.3. Extinction and total spectral transmission
    5. 3.5. Units and scales
    6. 3.6. Measurement methods
      1. 3.6.1. Visual estimation of the meteorological optical range
      2. 3.6.2. Meteorological optical range measurement instruments
        1. 3.6.2.1. Transmissometers
        2. 3.6.2.2. Scatterometers
      3. 3.6.3. Exposure and implantation of instruments
    7. 3.7. Visibility perturbation factors
    8. 3.8. Applications
      1. 3.8.1 Meteorology applications
      2. 3.8.2. Aeronautic applications
      3. 3.8.3. Free space optic telecommunications applications
      4. 3.8.4. Automative safety applications
    9. 3.9. Appendix – optical contrast and Koschmieder’s law
    10. 3.10. Glossary
    11. 3.11. Bibliography
  8. Chapter 4: Low Coherence Interferometry
    1. 4.1. Introduction
    2. 4.2. Phase measurement
      1. 4.2.1. Low coherence interferometry
      2. 4.2.2. Optical frequency domain reflectometry (OFDR)
    3. 4.3. Metrology considerations
      1. 4.3.1. Wavelength
      2. 4.3.2. Relative group delay
      3. 4.3.3. Chromatic dispersion
    4. 4.4. Applications
      1. 4.4.1. Characterization of photonic crystal fibers
      2. 4.4.2. Amplifying fiber characterization
      3. 4.4.3. Local characterization of fiber Bragg gratings
        1. 4.4.3.1. The fiber Bragg gratings
        2. 4.4.3.2. Accuracy of the index profile reconstruction
      4. 4.4.4. Strain and temperature sensors
        1. 4.4.4.1. Background
        2. 4.4.4.2. Measurement methodology
        3. 4.4.4.3. Longitudinal strain measurement
        4. 4.4.4.4. Temperature gradient measurement
    5. 4.5. Conclusion
    6. 4.6. Bibliography
  9. Chapter 5: Passive Remote Sensing at Submillimeter Wavelengths and THz
    1. 5.1. Introduction
      1. 5.1.1. Earth atmosphere and the radioelectric spectrum
      2. 5.1.2. Application fields of heterodyne detection
    2. 5.2. Submillimeter-THz low noise heterodyne receivers
      1. 5.2.1. Mixers with AsGa Schottky diodes
      2. 5.2.2. Mixers with superconductors (SIS, HEB)
      3. 5.2.3. Local oscillator sources
        1. 5.2.3.1. Design LERMA (OP) – LISIF (UPMC); technology from JPL –NASA
    3. 5.3. Submillimeter – THz applications for astronomy and astrophysics
      1. 5.3.1. Airborne or stratospheric balloon observatories
      2. 5.3.2. Space observatories
    4. 5.4. Submillimeter – THz remote-sensing applications to aeronomy and planetology
      1. 5.4.1. Atmospheric sounders
      2. 5.4.2. Cometary and planetary probes
    5. 5.5. Conclusion
    6. 5.6. Acknowledgements
    7. 5.7. Bibliography
  10. Chapter 6: Exposimetry – Measurements of the Ambient RF Electromagnetic Fields
    1. 6.1. Introduction
    2. 6.2. Definitions
    3. 6.3. Interactions of the electromagnetic fields with biological tissues and medical risks
      1. 6.3.1. What are the effects of the electromagnetic fields and waves on human health?
      2. 6.3.2. Duality wave-photon: remarks on activation energies
      3. 6.3.3. RF fields are non-ionizing
      4. 6.3.4. Biological effects of the electromagnetic field
      5. 6.3.5. Possible mechanisms
    4. 6.4. Exposure limit values
    5. 6.5. Electromagnetic environment to be measured
      1. 6.5.1. Why is knowledge of our electromagnetic environment important?
      2. 6.5.2. What do we have to measure?
        1. 6.5.2.1. Leakage levels close to the ultra high frequency materials
        2. 6.5.2.2. Physical quantities to measure
      3. 6.5.3. Parameters and configurations to be considered
      4. 6.5.4. A priori evaluation of the fields
    6. 6.6. Measurement equipment
      1. 6.6.1. Measurement line
        1. 6.6.1.1. Unit sensitive to the physical quantity to be measured
        2. 6.6.1.2. Signal treatment unit and display system
      2. 6.6.2. Devices measuring RF field intensity
      3. 6.6.3. Sensors and detectors
        1. 6.6.3.1. Magnetic field probes
        2. 6.6.3.2. Electric probes of fields
        3. 6.6.3.3. Detectors
    7. 6.7. Measurements
      1. 6.7.1. Measures to the static field
      2. 6.7.2. ELF field measurements
      3. 6.7.3. RF and UHF field measurements
      4. 6.7.4. In situ measurements and total electric field
      5. 6.7.5. Calibration
      6. 6.7.6. Evaluation of measurement uncertainties
      7. 6.7.7. SAR and its determination
      8. 6.7.8. Measurement techniques for electromagnetic compatibility (CEM) in the field of RF
      9. 6.7.9. Measurements for WiFi (IEEE 802.11) technologies
      10. 6.7.10. Field measurements in mobility situations
        1. 6.7.10.1. Measurement techniques
        2. 6.7.10.2. Individual dosimetry – personal dosemeter
    8. 6.8. Control stations and uninterrupted electromagnetic measurements: towards a 3D electromagnetic land register
    9. 6.9. Appendix 1 – some field measurements
    10. 6.10. Appendix 2 – principal characteristics of mobile communication systems
    11. 6.11. Bibliography
  11. Chapter 7: Ambient RF Electromagnetic Measurements in a Rural Environment
    1. 7.1. Introduction
    2. 7.2. Measurement set-up
    3. 7.3. Operating mode
    4. 7.4. Different studies
      1. 7.4.1. Study of the 20-220 MHz band
      2. 7.4.2. Study of the 200-1,200 MHz band
      3. 7.4.3. Study of the 1-3 GHz band
    5. 7.5. Measurements results
    6. 7.6. Electrical field strength
    7. 7.7. Conclusion
    8. 7.8. Acknowledgements
    9. 7.9. Bibliography
  12. Chapter 8: Radio Mobile Measurement Techniques
    1. 8.1. Introduction
    2. 8.2. Field strength measurements
    3. 8.3. Measurement of the impulse response
    4. 8.4. Measurement of directions of arrival
      1. 8.4.1. Mathematical modeling of the signal
      2. 8.4.2. Determination methods of the directions of arrival
        1. 8.4.2.1. Linear methods
          1. 8.4.2.1.1. Fourier analysis with Wiener inversion
          2. 8.4.2.1.2. Phase reconstruction
        2. 8.4.2.2. Nonlinear or high resolution methods
          1. 8.4.2.2.1. MUSIC method and its adaptation to circular arrays
          2. 8.4.2.2.2. Method based on the maximum probability estimate
    5. 8.5. WiFi measurements in a home environment (field strength, data rate)
      1. 8.5.1. Experimental set-up
      2. 8.5.2. “Berlioz” site
      3. 8.5.3. Electrical field strength measurements
      4. 8.5.4. Data rate measurements
    6. 8.6. Conclusion
    7. 8.7. Glossary
    8. 8.8. Acknowledgments
    9. 8.9. Bibliography
  13. Chapter 9: Dosimetry of Interactions Between the Radioelectric Waves and Human Tissues – Hybrid Approach of the Metrology
    1. 9.1. Introduction
    2. 9.2. Evaluation of the power absorber for the tissues
    3. 9.3. Experimental evaluation of the specific absorption rate (SAR)
    4. 9.4. SAR evaluation in biological tissues
      1. 9.4.1. DAS evaluation by numerical methods
      2. 9.4.2. Biological tissues modeling
      3. 9.4.3. Source modeling
      4. 9.4.4. Absorbed power in the tissue distribution
    5. 9.5. Variability, representativeness and uncertainty
    6. 9.6. Conclusions
    7. 9.7. Bibliography
  14. Chapter 10: Measurement for the Evaluation of Electromagnetic Compatibility
    1. 10.1. Introduction
    2. 10.2. General aspects of EMC measurement
    3. 10.3. Emissivity and radiated immunity testing
      1. 10.3.1. TEM and GTEM cells
      2. 10.3.2. Measurements in an anechoic chamber
      3. 10.3.3. The main principles behind radiated emissivity testing
      4. 10.3.4. The main principles behind radiated immunity testing
    4. 10.4. Efficiency and limitations of EMC measurement techniques
    5. 10.5. Mode-stirred reverberation chambers
      1. 10.5.1. The principles of reverberation
      2. 10.5.2. Tests in an anechoic chamber and in a reverberation chamber
      3. 10.5.3. Recent and future applications for reverberation chambers
    6. 10.6. Electromagnetic near-field measurement techniques applied to EMC
      1. 10.6.1. Near-field techniques in a Rayleigh zone
      2. 10.6.2. Near-field techniques outside the Rayleigh zone
    7. 10.7. Conclusions and future prospects
    8. 10.8. Bibliography
  15. Chapter 11: High Precision Pulsar Timing in Centrimetric Radioastronomy
    1. 11.1. Introduction
    2. 11.2. Ultra-stable clocks to the limits of the Galaxy
    3. 11.3. Dispersion by the interstellar medium
    4. 11.4. Instrumentation used to study pulsars
    5. 11.5. Swept local oscillator dedispersion
    6. 11.6. Filterbank dedispersion
    7. 11.7. Real-time coherent dedispersion
    8. 11.8. The coherent pulsar instrumentation installed at Nançay
    9. 11.9. Conclusion
    10. 11.10. Bibliography
  16. Chapter 12: Long Baseline Decameter Interferometry between Nançay and LOFAR
    1. 12.1. Introduction
    2. 12.2. Observations
    3. 12.3. Analysis
    4. 12.4. Conclusions and perspectives
    5. 12.5. Acknowledgements
    6. 12.6. Bibliography
  17. List of Authors
  18. Index