O'Reilly logo

Mastering SciPy by Francisco J. Blanco-Silva

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Data mining and machine learning

We are going to focus on three kinds of problems: Classification, Dimensionality reduction, and Clustering. Each of these problems is used in both data mining and machine learning to draw conclusions about the data. Let's explain each of these settings in different sections.

Classification

Classification is an example of supervised learning. There is a set of training data with an attribute that classifies it in one of several categories. The goal is to find the value of that attribute for new data. For example, with our running database, we could use all the data from the year 2013 to figure out which financial complaints got solved positively for the customer, which ones got solved without relief, and which ones ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required