O'Reilly logo

Mastering Scientific Computing with R by Radia M. Johnson, Paul Gerrard

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Hypothesis testing

Often when we analyze data, we would like to know whether the mean of our sample distribution is different from some theoretical value or expected average. Suppose we measured the height of 12 females and wanted to know if the average we calculated from our sample population is significantly different from the theoretical average height of females, which is 171 cm. A simple test we could perform to test this hypothesis would be the Wilcoxon signed-rank test. To do this in R, we will use the wilcox.test() function with the mu argument set to 171:

> female.heights <- c(117, 162, 143, 120, 183, 175, 147, 145, 165, 167, 179, 116) > mean(females.heights) [1] 151.5833 > wilcox.test(female.heights, mu=171) Wilcoxon signed rank test ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required