O'Reilly logo

Mastering Python Data Analysis by Luiz Felipe Martins, Magnus Vilhelm Persson

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Hierarchical clustering analysis

Hierarchical clustering is connectivity-based clustering. It assumes that the clusters are connected, or in another word, linked. For example, we can classify animals and plants based on this assumption. We have all developed from something common. This makes it possible for us to assume that every observation is its own cluster on one hand and, on the other, all observations are in one and the same group. This also forms the basis for two approaches to hierarchical clustering algorithms, agglomerative and divisive:

  • Agglomerative clustering starts out with each point in its own cluster and then merges the two clusters with the lowest dissimilarity, that is, the bottom-up approach
  • Divisive clustering is, as the name ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required