O'Reilly logo

Mahout in Action by Ellen Friedman, Ted Dunning, Robin Anil, Sean Owen

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Chapter 11. Taking clustering to production

This chapter covers

  • Running a clustering job on a Hadoop cluster
  • Tuning a clustering job for performance
  • Batch clustering versus online clustering

You’ve seen how different clustering algorithms in Mahout group the documents in the Reuters news data set. Along the way, you learned about the vector representation of data, distance measures, and various other ways to improve the quality of clusters. One of Mahout’s strengths is its ability to scale. The Reuters data set wasn’t much of a challenge, so in this chapter we set a bigger challenge for Mahout: clustering one of the largest free data sets in the world: Wikipedia—the free encyclopedia. Mahout can handle such scales because the algorithms ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required