O'Reilly logo

Mahout in Action by Ellen Friedman, Ted Dunning, Robin Anil, Sean Owen

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Chapter 5. Taking recommenders to production

This chapter covers

  • Analyzing data from a real dating site
  • Designing and refining a recommender engine solution
  • Deploying a web-based recommender service in production

So far, this book has toured the recommender algorithms and variants that Apache Mahout provides, and discussed how to evaluate the accuracy and performance of a recommender. The next step is to apply all of this to a real data set to create an effective recommender engine from scratch based on data. You’ll create one based on data taken from a dating site, and then you’ll turn it into a deployable, production-ready web service.

There’s no one standard approach to building a recommender for given data and a given problem domain. ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required