Chapter 32. Exception Basics

This part of the book deals with exceptions, which are events that can modify the flow of control through a program. In Python, exceptions are triggered automatically on errors, and they can be triggered and intercepted by your code. They are processed by four statements we’ll study in this part, the first of which has two variations (listed separately here) and the last of which was an optional extension until Python 2.6 and 3.0:

try/except

Catch and recover from exceptions raised by Python, or by you.

try/finally

Perform cleanup actions, whether exceptions occur or not.

raise

Trigger an exception manually in your code.

assert

Conditionally trigger an exception in your code.

with/as

Implement context managers in Python 2.6 and 3.0 (optional in 2.5).

This topic was saved until nearly the end of the book because you need to know about classes to code exceptions of your own. With a few exceptions (pun intended), though, you’ll find that exception handling is simple in Python because it’s integrated into the language itself as another high-level tool.

Why Use Exceptions?

In a nutshell, exceptions let us jump out of arbitrarily large chunks of a program. Consider the hypothetical pizza-making robot we discussed earlier in the book. Suppose we took the idea seriously and actually built such a machine. To make a pizza, our culinary automaton would need to execute a plan, which we would implement as a Python program: it would take an order, prepare the dough, add toppings, ...

Get Learning Python, 4th Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.