You are previewing Learning Java, 4th Edition.

Learning Java, 4th Edition

Cover of Learning Java, 4th Edition by Daniel Leuck... Published by O'Reilly Media, Inc.
  1. Learning Java
  2. Preface
    1. Who Should Read This Book
    2. New Developments
      1. New in This Edition (Java 6 and 7)
    3. Using This Book
    4. Online Resources
    5. Conventions Used in This Book
    6. Using Code Examples
    7. Safari® Books Online
    8. How to Contact Us
    9. Acknowledgments
  3. 1. A Modern Language
    1. Enter Java
      1. Java’s Origins
      2. Growing Up
    2. A Virtual Machine
    3. Java Compared with Other Languages
    4. Safety of Design
      1. Simplify, Simplify, Simplify...
      2. Type Safety and Method Binding
      3. Incremental Development
      4. Dynamic Memory Management
      5. Error Handling
      6. Threads
      7. Scalability
    5. Safety of Implementation
      1. The Verifier
      2. Class Loaders
      3. Security Managers
    6. Application and User-Level Security
    7. A Java Road Map
      1. The Past: Java 1.0–Java 1.6
      2. The Present: Java 7
      3. The Future
      4. Availability
  4. 2. A First Application
    1. Java Tools and Environment
    2. Configuring Eclipse and Creating a Project
      1. Importing the Learning Java Examples
    3. HelloJava
      1. Classes
      2. The main() Method
      3. Classes and Objects
      4. Variables and Class Types
      5. HelloComponent
      6. Inheritance
      7. The JComponent Class
      8. Relationships and Finger Pointing
      9. Package and Imports
      10. The paintComponent() Method
    4. HelloJava2: The Sequel
      1. Instance Variables
      2. Constructors
      3. Events
      4. The repaint() Method
      5. Interfaces
    5. HelloJava3: The Button Strikes!
      1. Method Overloading
      2. Components
      3. Containers
      4. Layout
      5. Subclassing and Subtypes
      6. More Events and Interfaces
      7. Color Commentary
      8. Static Members
      9. Arrays
      10. Our Color Methods
    6. HelloJava4: Netscape’s Revenge
      1. Threads
      2. The Thread Class
      3. The Runnable Interface
      4. Starting the Thread
      5. Running Code in the Thread
      6. Exceptions
      7. Synchronization
  5. 3. Tools of the Trade
    1. JDK Environment
    2. The Java VM
    3. Running Java Applications
      1. System Properties
    4. The Classpath
      1. javap
    5. The Java Compiler
    6. JAR Files
      1. File Compression
      2. The jar Utility
      3. The pack200 Utility
    7. Policy Files
      1. The Default Security Manager
      2. The policytool Utility
      3. Using a Policy File with the Default Security Manager
  6. 4. The Java Language
    1. Text Encoding
    2. Comments
      1. Javadoc Comments
    3. Types
      1. Primitive Types
      2. Reference Types
      3. A Word About Strings
    4. Statements and Expressions
      1. Statements
      2. Expressions
    5. Exceptions
      1. Exceptions and Error Classes
      2. Exception Handling
      3. Bubbling Up
      4. Stack Traces
      5. Checked and Unchecked Exceptions
      6. Throwing Exceptions
      7. try Creep
      8. The finally Clause
      9. Try with Resources
      10. Performance Issues
    6. Assertions
      1. Enabling and Disabling Assertions
      2. Using Assertions
    7. Arrays
      1. Array Types
      2. Array Creation and Initialization
      3. Using Arrays
      4. Anonymous Arrays
      5. Multidimensional Arrays
      6. Inside Arrays
  7. 5. Objects in Java
    1. Classes
      1. Accessing Fields and Methods
      2. Static Members
    2. Methods
      1. Local Variables
      2. Shadowing
      3. Static Methods
      4. Initializing Local Variables
      5. Argument Passing and References
      6. Wrappers for Primitive Types
      7. Autoboxing and Unboxing of Primitives
      8. Variable-Length Argument Lists
      9. Method Overloading
    3. Object Creation
      1. Constructors
      2. Working with Overloaded Constructors
      3. Static and Nonstatic Initializer Blocks
    4. Object Destruction
      1. Garbage Collection
      2. Finalization
      3. Weak and Soft References
    5. Enumerations
      1. Enum Values
      2. Customizing Enumerations
  8. 6. Relationships Among Classes
    1. Subclassing and Inheritance
      1. Shadowed Variables
      2. Overriding Methods
      3. Special References: this and super
      4. Casting
      5. Using Superclass Constructors
      6. Full Disclosure: Constructors and Initialization
      7. Abstract Methods and Classes
    2. Interfaces
      1. Interfaces as Callbacks
      2. Interface Variables
      3. Subinterfaces
    3. Packages and Compilation Units
      1. Compilation Units
      2. Package Names
      3. Class Visibility
      4. Importing Classes
    4. Visibility of Variables and Methods
      1. Basic Access Modifiers
      2. Subclasses and Visibility
      3. Interfaces and Visibility
    5. Arrays and the Class Hierarchy
      1. ArrayStoreException
    6. Inner Classes
      1. Inner Classes as Adapters
      2. Inner Classes Within Methods
  9. 7. Working with Objects and Classes
    1. The Object Class
      1. Equality and Equivalence
      2. Hashcodes
      3. Cloning Objects
    2. The Class Class
    3. Reflection
      1. Modifiers and Security
      2. Accessing Fields
      3. Accessing Methods
      4. Accessing Constructors
      5. What About Arrays?
      6. Accessing Generic Type Information
      7. Accessing Annotation Data
      8. Dynamic Interface Adapters
      9. What Is Reflection Good For?
    4. Annotations
      1. Using Annotations
      2. Standard Annotations
      3. The apt Tool
  10. 8. Generics
    1. Containers: Building a Better Mousetrap
      1. Can Containers Be Fixed?
    2. Enter Generics
      1. Talking About Types
    3. “There Is No Spoon”
      1. Erasure
      2. Raw Types
    4. Parameterized Type Relationships
      1. Why Isn’t a List<Date> a List<Object>?
    5. Casts
    6. Writing Generic Classes
      1. The Type Variable
      2. Subclassing Generics
      3. Exceptions and Generics
      4. Parameter Type Limitations
    7. Bounds
      1. Erasure and Bounds (Working with Legacy Code)
    8. Wildcards
      1. A Supertype of All Instantiations
      2. Bounded Wildcards
      3. Thinking Outside the Container
      4. Lower Bounds
      5. Reading, Writing, and Arithmetic
      6. <?>, <Object>, and the Raw Type
      7. Wildcard Type Relationships
    9. Generic Methods
      1. Generic Methods Introduced
      2. Type Inference from Arguments
      3. Type Inference from Assignment Context
      4. Explicit Type Invocation
      5. Wildcard Capture
      6. Wildcard Types Versus Generic Methods
    10. Arrays of Parameterized Types
      1. Using Array Types
      2. What Good Are Arrays of Generic Types?
      3. Wildcards in Array Types
    11. Case Study: The Enum Class
    12. Case Study: The sort() Method
    13. Conclusion
  11. 9. Threads
    1. Introducing Threads
      1. The Thread Class and the Runnable Interface
      2. Controlling Threads
      3. Death of a Thread
    2. Threading an Applet
      1. Issues Lurking
    3. Synchronization
      1. Serializing Access to Methods
      2. Accessing class and instance Variables from Multiple Threads
      3. The wait() and notify() Methods
      4. Passing Messages
      5. ThreadLocal Objects
    4. Scheduling and Priority
      1. Thread State
      2. Time-Slicing
      3. Priorities
      4. Yielding
    5. Thread Groups
      1. Working with ThreadGroups
      2. Uncaught Exceptions
    6. Thread Performance
      1. The Cost of Synchronization
      2. Thread Resource Consumption
    7. Concurrency Utilities
      1. Executors
      2. Locks
      3. Synchronization Constructs
      4. Atomic Operations
    8. Conclusion
  12. 10. Working with Text
    1. Text-Related APIs
    2. Strings
      1. Constructing Strings
      2. Strings from Things
      3. Comparing Strings
      4. Searching
      5. Editing
      6. String Method Summary
      7. StringBuilder and StringBuffer
    3. Internationalization
      1. The java.util.Locale Class
      2. Resource Bundles
    4. Parsing and Formatting Text
      1. Parsing Primitive Numbers
      2. Tokenizing Text
    5. Printf-Style Formatting
      1. Formatter
      2. The Format String
      3. String Conversions
      4. Primitive and Numeric Conversions
      5. Flags
      6. Miscellaneous
    6. Formatting with the java.text Package
      1. MessageFormat
    7. Regular Expressions
      1. Regex Notation
      2. The java.util.regex API
  13. 11. Core Utilities
    1. Math Utilities
      1. The java.lang.Math Class
      2. Big/Precise Numbers
      3. Floating-Point Components
      4. Random Numbers
    2. Dates and Times
      1. Working with Calendars
      2. Time Zones
      3. Parsing and Formatting with DateFormat
      4. Printf-Style Date and Time Formatting
    3. Timers
    4. Collections
      1. The Collection Interface
      2. Iterator
      3. Collection Types
      4. The Map Interface
      5. Collection Implementations
      6. Hash Codes and Key Values
      7. Synchronized and Unsynchronized Collections
      8. Read-Only and Read-Mostly Collections
      9. WeakHashMap
      10. EnumSet and EnumMap
      11. Sorting Collections
      12. A Thrilling Example
    5. Properties
      1. Loading and Storing
      2. System Properties
    6. The Preferences API
      1. Preferences for Classes
      2. Preferences Storage
      3. Change Notification
    7. The Logging API
      1. Overview
      2. Logging Levels
      3. A Simple Example
      4. Logging Setup Properties
      5. The Logger
      6. Performance
    8. Observers and Observables
  14. 12. Input/Output Facilities
    1. Streams
      1. Basic I/O
      2. Character Streams
      3. Stream Wrappers
      4. Pipes
      5. Streams from Strings and Back
      6. Implementing a Filter Stream
    2. File I/O
      1. The java.io.File Class
      2. File Streams
      3. RandomAccessFile
      4. Resource Paths
    3. The NIO File API
      1. FileSystem and Path
      2. NIO File Operations
      3. Directory Operations
      4. Watching Paths
    4. Serialization
      1. Initialization with readObject()
      2. SerialVersionUID
    5. Data Compression
      1. Archives and Compressed Data
      2. Decompressing Data
      3. Zip Archive As a Filesystem
    6. The NIO Package
      1. Asynchronous I/O
      2. Performance
      3. Mapped and Locked Files
      4. Channels
      5. Buffers
      6. Character Encoders and Decoders
      7. FileChannel
      8. Scalable I/O with NIO
  15. 13. Network Programming
    1. Sockets
      1. Clients and Servers
      2. author="pat” timestamp="20120926T110720-0500” comment="one of those sections I hate to get rid of but is less relevant in terms of the example... should probably find a more modern example...”The DateAtHost Client
      3. The TinyHttpd Server
      4. Socket Options
      5. Proxies and Firewalls
    2. Datagram Sockets
      1. author="pat” timestamp="20120926T141346-0500” comment="I actually rewrote this as a standalone client but then decided to leave it as an applet”The HeartBeat Applet
      2. InetAddress
    3. Simple Serialized Object Protocols
      1. A Simple Object-Based Server
    4. Remote Method Invocation
      1. Real-World Usage
      2. Remote and Nonremote Objects
      3. An RMI Example
      4. RMI and CORBA
    5. Scalable I/O with NIO
      1. Selectable Channels
      2. Using Select
      3. LargerHttpd
      4. Nonblocking Client-Side Operations
  16. 14. Programming for the Web
    1. Uniform Resource Locators (URLs)
    2. The URL Class
      1. Stream Data
      2. Getting the Content as an Object
      3. Managing Connections
      4. Handlers in Practice
      5. Useful Handler Frameworks
    3. Talking to Web Applications
      1. Using the GET Method
      2. Using the POST Method
      3. The HttpURLConnection
      4. SSL and Secure Web Communications
      5. URLs, URNs, and URIs
    4. Web Services
      1. XML-RPC
      2. WSDL
      3. The Tools
      4. The Weather Service Client
  17. 15. Web Applications and Web Services
    1. Web Application Technologies
      1. Page-Oriented Versus “Single Page” Applications
      2. JSPs
      3. XML and XSL
      4. Web Application Frameworks
      5. Google Web Toolkit
      6. HTML5, AJAX, and More...
    2. Java Web Applications
      1. The Servlet Lifecycle
      2. Servlets
      3. The HelloClient Servlet
      4. The Servlet Response
      5. Servlet Parameters
      6. The ShowParameters Servlet
      7. User Session Management
      8. The ShowSession Servlet
      9. The ShoppingCart Servlet
      10. Cookies
      11. The ServletContext API
      12. Asynchronous Servlets
    3. WAR Files and Deployment
      1. Configuration with web.xml and Annotations
      2. URL Pattern Mappings
      3. Deploying HelloClient
      4. Error and Index Pages
      5. Security and Authentication
      6. Protecting Resources with Roles
      7. Secure Data Transport
      8. Authenticating Users
      9. Procedural Authorization
    4. Servlet Filters
      1. A Simple Filter
      2. A Test Servlet
      3. Declaring and Mapping Filters
      4. Filtering the Servlet Request
      5. Filtering the Servlet Response
    5. Building WAR Files with Ant
      1. A Development-Oriented Directory Layout
      2. Deploying and Redeploying WARs with Ant
    6. Implementing Web Services
      1. Defining the Service
      2. Our Echo Service
      3. Using the Service
      4. Data Types
    7. Conclusion
  18. 16. Swing
    1. Components
      1. Peers and Look-and-Feel
      2. The MVC Framework
      3. Painting
      4. Enabling and Disabling Components
      5. Focus, Please
      6. Other Component Methods
      7. Layout Managers
      8. Insets
      9. Z-Ordering (Stacking Components)
      10. The revalidate() and doLayout() Methods
      11. Managing Components
      12. Listening for Components
      13. Windows, Frames and Splash Screens
      14. Other Methods for Controlling Frames
      15. Content Panes
      16. Desktop Integration
    2. Events
      1. Event Receivers and Listener Interfaces
      2. Event Sources
      3. Event Delivery
      4. Event Types
      5. The java.awt.event.InputEvent Class
      6. Mouse and Key Modifiers on InputEvents
      7. Focus Events
    3. Event Summary
      1. Adapter Classes
      2. Dummy Adapters
    4. The AWT Robot!
    5. Multithreading in Swing
  19. 17. Using Swing Components
    1. Buttons and Labels
      1. HTML Text in Buttons and Labels
    2. Checkboxes and Radio Buttons
    3. Lists and Combo Boxes
    4. The Spinner
    5. Borders
    6. Menus
    7. Pop-Up Menus
      1. Component-Managed Pop Ups
    8. The JScrollPane Class
    9. The JSplitPane Class
    10. The JTabbedPane Class
    11. Scrollbars and Sliders
    12. Dialogs
      1. File Selection Dialog
      2. The Color Chooser
  20. 18. More Swing Components
    1. Text Components
      1. The TextEntryBox Application
      2. Formatted Text
      3. Filtering Input
      4. Validating Data
      5. Say the Magic Word
      6. Sharing a Data Model
      7. HTML and RTF for Free
      8. Managing Text Yourself
    2. Focus Navigation
      1. Trees
      2. Nodes and Models
      3. Save a Tree
      4. Tree Events
      5. A Complete Example
    3. Tables
      1. A First Stab: Freeloading
      2. Round Two: Creating a Table Model
      3. Round Three: A Simple Spreadsheet
      4. Sorting and Filtering
      5. Printing JTables
    4. Desktops
    5. Pluggable Look-and-Feel
    6. Creating Custom Components
      1. Generating Events
      2. A Dial Component
      3. Model and View Separation
  21. 19. Layout Managers
    1. FlowLayout
    2. GridLayout
    3. BorderLayout
    4. BoxLayout
    5. CardLayout
    6. GridBagLayout
      1. The GridBagConstraints Class
      2. Grid Coordinates
      3. The fill Constraint
      4. Spanning Rows and Columns
      5. Weighting
      6. Anchoring
      7. Padding and Insets
      8. Relative Positioning
      9. Composite Layouts
    7. Other Layout Managers
    8. Absolute Positioning
  22. 20. Drawing with the 2D API
    1. The Big Picture
    2. The Rendering Pipeline
    3. A Quick Tour of Java 2D
      1. Filling Shapes
      2. Drawing Shape Outlines
      3. Convenience Methods
      4. Drawing Text
      5. Drawing Images
      6. The Whole Iguana
    4. Filling Shapes
      1. Solid Colors
      2. Color Gradients
      3. Textures
      4. Desktop Colors
    5. Stroking Shape Outlines
    6. Using Fonts
      1. Font Metrics
    7. Displaying Images
      1. The Image Class
      2. Image Observers
      3. Scaling and Size
    8. Drawing Techniques
      1. Double Buffering
      2. Limiting Drawing with Clipping
      3. Offscreen Drawing
    9. Printing
  23. 21. Working with Images and Other Media
    1. Loading Images
      1. ImageObserver
      2. MediaTracker
      3. ImageIcon
      4. ImageIO
    2. Producing Image Data
      1. Drawing Animations
      2. BufferedImage Anatomy
      3. Color Models
      4. Creating an Image
      5. Updating a BufferedImage
    3. Filtering Image Data
      1. How ImageProcessor Works
      2. Converting an Image to a BufferedImage
      3. Using the RescaleOp Class
      4. Using the AffineTransformOp Class
    4. Saving Image Data
    5. Simple Audio
    6. Java Media Framework
  24. 22. JavaBeans
    1. What’s a Bean?
      1. What Constitutes a Bean?
    2. The NetBeans IDE
      1. Installing and Running NetBeans
    3. Properties and Customizers
    4. Event Hookups and Adapters
      1. Taming the Juggler
      2. Molecular Motion
    5. Binding Properties
      1. Constraining Properties
    6. Building Beans
      1. The Dial Bean
      2. Design Patterns for Properties
    7. Limitations of Visual Design
    8. Serialization Versus Code Generation
    9. Customizing with BeanInfo
      1. Getting Properties Information
    10. Handcoding with Beans
      1. Bean Instantiation and Type Management
      2. Working with Serialized Beans
      3. Runtime Event Hookups with Reflection
    11. BeanContext and BeanContextServices
    12. The Java Activation Framework
    13. Enterprise JavaBeans and POJO-Based Enterprise Frameworks
  25. 23. Applets
    1. The Politics of Browser-Based Applications
    2. Applet Support and the Java Plug-in
    3. The JApplet Class
      1. Applet Lifecycle
      2. The Applet Security Sandbox
      3. Getting Applet Resources
      4. The <applet> Tag
      5. Attributes
      6. Parameters
      7. ¿Habla Applet?
      8. The Complete <applet> Tag
      9. Loading Class Files
      10. Packages
      11. appletviewer
    4. Java Web Start
    5. Conclusion
  26. 24. XML
    1. The Butler Did It
    2. A Bit of Background
      1. Text Versus Binary
      2. A Universal Parser
      3. The State of XML
      4. The XML APIs
      5. XML and Web Browsers
    3. XML Basics
      1. Attributes
      2. XML Documents
      3. Encoding
      4. Namespaces
      5. Validation
      6. HTML to XHTML
    4. SAX
      1. The SAX API
      2. Building a Model Using SAX
      3. XMLEncoder/Decoder
    5. DOM
      1. The DOM API
      2. Test-Driving DOM
      3. Generating XML with DOM
      4. JDOM
    6. XPath
      1. Nodes
      2. Predicates
      3. Functions
      4. The XPath API
      5. XMLGrep
    7. XInclude
      1. Enabling XInclude
    8. Validating Documents
      1. Using Document Validation
      2. DTDs
      3. XML Schema
      4. The Validation API
    9. JAXB Code Binding and Generation
      1. Annotating Our Model
      2. Generating a Java Model from an XML Schema
      3. Generating an XML Schema from a Java Model
    10. Transforming Documents with XSL/XSLT
      1. XSL Basics
      2. Transforming the Zoo Inventory
      3. XSLTransform
      4. XSL in the Browser
    11. Web Services
    12. The End of the Book
  27. A. The Eclipse IDE
    1. The IDE Wars
    2. Getting Started with Eclipse
      1. Importing the Learning Java Examples
    3. Using Eclipse
      1. Getting at the Source
      2. The Lay of the Land
      3. Running the Examples
      4. Building the Ant-Based Examples
      5. Loner Examples
    4. Eclipse Features
      1. Coding Shortcuts
      2. Autocorrection
      3. Refactoring
      4. Diffing Files
      5. Organizing Imports
      6. Formatting Source Code
    5. Conclusion
  28. B. BeanShell: Java Scripting
    1. Running BeanShell
    2. Java Statements and Expressions
      1. Imports
    3. BeanShell Commands
    4. Scripted Methods and Objects
      1. Scripting Interfaces and Adapters
    5. Changing the Classpath
    6. Learning More . . .
  29. Glossary
  30. Index
  31. About the Authors
  32. Colophon
  33. Copyright
O'Reilly logo

The URL Class

Bringing this down to a more concrete level is the Java URL class. The URL class represents a URL address and provides a simple API for accessing web resources, such as documents and applications on servers. It can use an extensible set of protocol and content handlers to perform the necessary communication and in theory even data conversion. With the URL class, an application can open a connection to a server on the network and retrieve content with just a few lines of code. As new types of servers and new formats for content evolve, additional URL handlers can be supplied to retrieve and interpret the data without modifying your applications.

A URL is represented by an instance of the java.net.URL class. A URL object manages all the component information within a URL string and provides methods for retrieving the object it identifies. We can construct a URL object from a URL string or from its component parts:

try {
    URL aDoc =
      new URL( "http://foo.bar.com/documents/homepage.html" );
    URL sameDoc =
      new URL("http","foo.bar.com","documents/homepage.html");
} catch ( MalformedURLException e ) { ... }

These two URL objects point to the same network resource, the homepage.html document on the server foo.bar.com. Whether the resource actually exists and is available isn’t known until we try to access it. When initially constructed, the URL object contains only data about the object’s location and how to access it. No connection to the server has been made. We can examine the various parts of the URL with the getProtocol(), getHost(), and getFile() methods. We can also compare it to another URL with the sameFile() method (which has an unfortunate name for something that may not point to a file). sameFile() determines whether two URLs point to the same resource. It can be fooled, but sameFile() does more than compare the URL strings for equality; it takes into account the possibility that one server may have several names as well as other factors. (It doesn’t go as far as to fetch the resources and compare them, however.)

When a URL is created, its specification is parsed to identify just the protocol component. If the protocol doesn’t make sense, or if Java can’t find a protocol handler for it, the URL constructor throws a MalformedURLException. A protocol handler is a Java class that implements the communications protocol for accessing the URL resource. For example, given an http URL, Java prepares to use the HTTP protocol handler to retrieve documents from the specified web server.

As of Java 7, URL protocol handlers are guaranteed to be provided for http, https (secure HTTP), and ftp, as well as local file URLs and jar URLs that refer to files inside JAR archives. Outside of that, it gets a little dicey. We’ll talk more about the issues surrounding content and protocol handlers a bit later in this chapter.

Stream Data

The lowest-level and most general way to get data back from a URL is to ask for an InputStream from the URL by calling openStream(). Getting the data as a stream may also be useful if you want to receive continuous updates from a dynamic information source. The drawback is that you have to parse the contents of the byte stream yourself. Working in this mode is basically the same as working with a byte stream from socket communications, but the URL protocol handler has already dealt with all of the server communications and is providing you with just the content portion of the transaction. Not all types of URLs support the openStream() method because not all types of URLs refer to concrete data; you’ll get an UnknownServiceException if the URL doesn’t.

The following code prints the contents of an HTML file on a web server:

try {
    URL url = new URL("http://server/index.html");
  
    BufferedReader bin = new BufferedReader (
        new InputStreamReader( url.openStream() ));
  
    String line;
    while ( (line = bin.readLine()) != null ) {
        System.out.println( line );
    }
    bin.close();
} catch (Exception e) { }

We ask for an InputStream with openStream() and wrap it in a BufferedReader to read the lines of text. Because we specify the http protocol in the URL, we enlist the services of an HTTP protocol handler. Note that we haven’t talked about content handlers yet. In this case, because we’re reading directly from the input stream, no content handler (no transformation of the content data) is involved.

Getting the Content as an Object

As we said previously, reading raw content from a stream is the most general mechanism for accessing data over the Web. openStream() leaves the parsing of data up to you. The URL class, however, was intended to support a more sophisticated, pluggable, content-handling mechanism. We’ll discuss this now, but be aware that it is not widely used because of lack of standardization and limitations in how you can deploy new handlers. Although the Java community made some progress in recent years in standardizing a small set of protocol handlers, no such effort was made to standardize content handlers. This means that although this part of the discussion is interesting, its usefulness is limited.

The way it’s supposed to work is that when Java knows the type of content being retrieved from a URL and a proper content handler is available, you can retrieve the URL content as an appropriate Java object by calling the URL’s getContent() method. In this mode of operation, getContent() initiates a connection to the host, fetches the data for you, determines the type of data, and then invokes a content handler to turn the bytes into a Java object. It acts sort of as if you had read a serialized Java object, as in Chapter 13. Java will try to determine the type of the content by looking at its MIME type, its file extension, or even by examining the bytes directly.

For example, given the URL http://foo.bar.com/index.html , a call to getContent() uses the HTTP protocol handler to retrieve data and might use an HTML content handler to turn the data into an appropriate document object. Similarly, a GIF file might be turned into an AWT ImageProducer object using a GIF content handler. If we access the GIF file using an FTP URL, Java would use the same content handler but a different protocol handler to receive the data.

Since the content handler must be able to return any type of object, the return type of getContent() is Object. This might leave us wondering what kind of object we got. In a moment, we’ll describe how we could ask the protocol handler about the object’s MIME type. Based on this, and whatever other knowledge we have about the kind of object we are expecting, we can cast the Object to its appropriate, more specific type. For example, if we expect an image, we might cast the result of getContent() to ImageProducer:

try  {
    ImageProducer ip = (ImageProducer)myURL.getContent();
} catch ( ClassCastException e ) { ... }

Various kinds of errors can occur when trying to retrieve the data. For example, getContent() can throw an IOException if there is a communications error. Other kinds of errors can occur at the application level: some knowledge of how the application-specific content and protocol handlers deal with errors is necessary. One problem that could arise is that a content handler for the data’s MIME type wouldn’t be available. In this case, getContent() invokes a special “unknown type” handler that returns the data as a raw InputStream (back to square one).

In some situations, we may also need knowledge of the protocol handler. For example, consider a URL that refers to a nonexistent file on an HTTP server. When requested, the server returns the familiar “404 Not Found” message. To deal with protocol-specific operations like this, we may need to talk to the protocol handler, which we’ll discuss next.

Managing Connections

Upon calling openStream() or getContent() on a URL, the protocol handler is consulted and a connection is made to the remote server or location. Connections are represented by a URLConnection object, subtypes of which manage different protocol-specific communications and offer additional metadata about the source. The HttpURLConnection class, for example, handles basic web requests and also adds some HTTP-specific capabilities such as interpreting “404 Not Found” messages and other web server errors. We’ll talk more about HttpURLConnection later in this chapter.

We can get a URLConnection from our URL directly with the openConnection() method. One of the things we can do with the URLConnection is ask for the object’s content type before reading data. For example:

URLConnection connection = myURL.openConnection();
String mimeType = connection.getContentType();
InputStream in = connection.getInputStream();

Despite its name, a URLConnection object is initially created in a raw, unconnected state. In this example, the network connection was not actually initiated until we called the getContentType() method. The URLConnection does not talk to the source until data is requested or its connect() method is explicitly invoked. Prior to connection, network parameters and protocol-specific features can be set up. For example, we can set timeouts on the initial connection to the server and on reads:

URLConnection connection = myURL.openConnection();
connection.setConnectTimeout( 10000 ); // milliseconds
connection.setReadTimeout( 10000 ); // milliseconds
InputStream in = connection.getInputStream();

As we’ll see in the section “Using the POST Method,” we can get at the protocol-specific information by casting the URLConnection to its specific subtype.

Handlers in Practice

The content- and protocol-handler mechanisms we’ve described are very flexible; to handle new types of URLs, you need only add the appropriate handler classes. One interesting application of this would be Java-based web browsers that could handle new and specialized kinds of URLs by downloading them over the Net. The idea for this was touted in the earliest days of Java. Unfortunately, it never came to fruition. There is no API for dynamically downloading new content and protocol handlers. In fact, there is no standard API for determining what content and protocol handlers exist on a given platform.

Java currently mandates protocol handlers for HTTP, HTTPS, FTP, FILE, and JAR. While in practice you will generally find these basic protocol handlers with all versions of Java, that’s not entirely comforting, and the story for content handlers is even less clear. The standard Java classes don’t, for example, include content handlers for HTML, GIF, JPEG, or other common data types. Furthermore, although content and protocol handlers are part of the Java API and an intrinsic part of the mechanism for working with URLs, specific content and protocol handlers aren’t defined. Even those protocol handlers that have been bundled in Java are still packaged as part of the Sun implementation classes and are not truly part of the core API for all to see.

In summary, the Java content- and protocol-handler mechanism was a forward-thinking approach that never quite materialized. The promise of web browsers that dynamically extend themselves for new types of protocols and new content is, like flying cars, always just a few years away. Although the basic mechanics of the protocol-handler mechanism are useful (especially now with some standardization) for decoding content in your own applications, you should probably turn to other, newer frameworks that have a bit more specificity.

Useful Handler Frameworks

The idea of dynamically downloadable handlers could also be applied to other kinds of handler-like components. For example, the Java XML community is fond of referring to XML as a way to apply semantics (meaning) to documents and to Java as a portable way to supply the behavior that goes along with those semantics. It’s possible that an XML viewer could be built with downloadable handlers for displaying XML tags.

The JavaBeans APIs touch upon this subject with the Java Activation Framework (JAF), which provides a way to detect the data stream type and “encapsulate access to it” in a Java bean. If this sounds suspiciously like the content handler’s job, it is. Unfortunately, it looks like these APIs will not be merged and, outside of the Java Mail API, the JAF has not been widely used.

Fortunately, for working with URL streams of images, music, and video, very mature APIs are available. The Java Advanced Imaging API (JAI) includes a well-defined, extensible set of handlers for most image types, and the Java Media Framework (JMF) can play most common music and video types found online.

The best content for your career. Discover unlimited learning on demand for around $1/day.