You are previewing Learning Java, 4th Edition.

Learning Java, 4th Edition

Cover of Learning Java, 4th Edition by Daniel Leuck... Published by O'Reilly Media, Inc.
  1. Learning Java
  2. Preface
    1. Who Should Read This Book
    2. New Developments
      1. New in This Edition (Java 6 and 7)
    3. Using This Book
    4. Online Resources
    5. Conventions Used in This Book
    6. Using Code Examples
    7. Safari® Books Online
    8. How to Contact Us
    9. Acknowledgments
  3. 1. A Modern Language
    1. Enter Java
      1. Java’s Origins
      2. Growing Up
    2. A Virtual Machine
    3. Java Compared with Other Languages
    4. Safety of Design
      1. Simplify, Simplify, Simplify...
      2. Type Safety and Method Binding
      3. Incremental Development
      4. Dynamic Memory Management
      5. Error Handling
      6. Threads
      7. Scalability
    5. Safety of Implementation
      1. The Verifier
      2. Class Loaders
      3. Security Managers
    6. Application and User-Level Security
    7. A Java Road Map
      1. The Past: Java 1.0–Java 1.6
      2. The Present: Java 7
      3. The Future
      4. Availability
  4. 2. A First Application
    1. Java Tools and Environment
    2. Configuring Eclipse and Creating a Project
      1. Importing the Learning Java Examples
    3. HelloJava
      1. Classes
      2. The main() Method
      3. Classes and Objects
      4. Variables and Class Types
      5. HelloComponent
      6. Inheritance
      7. The JComponent Class
      8. Relationships and Finger Pointing
      9. Package and Imports
      10. The paintComponent() Method
    4. HelloJava2: The Sequel
      1. Instance Variables
      2. Constructors
      3. Events
      4. The repaint() Method
      5. Interfaces
    5. HelloJava3: The Button Strikes!
      1. Method Overloading
      2. Components
      3. Containers
      4. Layout
      5. Subclassing and Subtypes
      6. More Events and Interfaces
      7. Color Commentary
      8. Static Members
      9. Arrays
      10. Our Color Methods
    6. HelloJava4: Netscape’s Revenge
      1. Threads
      2. The Thread Class
      3. The Runnable Interface
      4. Starting the Thread
      5. Running Code in the Thread
      6. Exceptions
      7. Synchronization
  5. 3. Tools of the Trade
    1. JDK Environment
    2. The Java VM
    3. Running Java Applications
      1. System Properties
    4. The Classpath
      1. javap
    5. The Java Compiler
    6. JAR Files
      1. File Compression
      2. The jar Utility
      3. The pack200 Utility
    7. Policy Files
      1. The Default Security Manager
      2. The policytool Utility
      3. Using a Policy File with the Default Security Manager
  6. 4. The Java Language
    1. Text Encoding
    2. Comments
      1. Javadoc Comments
    3. Types
      1. Primitive Types
      2. Reference Types
      3. A Word About Strings
    4. Statements and Expressions
      1. Statements
      2. Expressions
    5. Exceptions
      1. Exceptions and Error Classes
      2. Exception Handling
      3. Bubbling Up
      4. Stack Traces
      5. Checked and Unchecked Exceptions
      6. Throwing Exceptions
      7. try Creep
      8. The finally Clause
      9. Try with Resources
      10. Performance Issues
    6. Assertions
      1. Enabling and Disabling Assertions
      2. Using Assertions
    7. Arrays
      1. Array Types
      2. Array Creation and Initialization
      3. Using Arrays
      4. Anonymous Arrays
      5. Multidimensional Arrays
      6. Inside Arrays
  7. 5. Objects in Java
    1. Classes
      1. Accessing Fields and Methods
      2. Static Members
    2. Methods
      1. Local Variables
      2. Shadowing
      3. Static Methods
      4. Initializing Local Variables
      5. Argument Passing and References
      6. Wrappers for Primitive Types
      7. Autoboxing and Unboxing of Primitives
      8. Variable-Length Argument Lists
      9. Method Overloading
    3. Object Creation
      1. Constructors
      2. Working with Overloaded Constructors
      3. Static and Nonstatic Initializer Blocks
    4. Object Destruction
      1. Garbage Collection
      2. Finalization
      3. Weak and Soft References
    5. Enumerations
      1. Enum Values
      2. Customizing Enumerations
  8. 6. Relationships Among Classes
    1. Subclassing and Inheritance
      1. Shadowed Variables
      2. Overriding Methods
      3. Special References: this and super
      4. Casting
      5. Using Superclass Constructors
      6. Full Disclosure: Constructors and Initialization
      7. Abstract Methods and Classes
    2. Interfaces
      1. Interfaces as Callbacks
      2. Interface Variables
      3. Subinterfaces
    3. Packages and Compilation Units
      1. Compilation Units
      2. Package Names
      3. Class Visibility
      4. Importing Classes
    4. Visibility of Variables and Methods
      1. Basic Access Modifiers
      2. Subclasses and Visibility
      3. Interfaces and Visibility
    5. Arrays and the Class Hierarchy
      1. ArrayStoreException
    6. Inner Classes
      1. Inner Classes as Adapters
      2. Inner Classes Within Methods
  9. 7. Working with Objects and Classes
    1. The Object Class
      1. Equality and Equivalence
      2. Hashcodes
      3. Cloning Objects
    2. The Class Class
    3. Reflection
      1. Modifiers and Security
      2. Accessing Fields
      3. Accessing Methods
      4. Accessing Constructors
      5. What About Arrays?
      6. Accessing Generic Type Information
      7. Accessing Annotation Data
      8. Dynamic Interface Adapters
      9. What Is Reflection Good For?
    4. Annotations
      1. Using Annotations
      2. Standard Annotations
      3. The apt Tool
  10. 8. Generics
    1. Containers: Building a Better Mousetrap
      1. Can Containers Be Fixed?
    2. Enter Generics
      1. Talking About Types
    3. “There Is No Spoon”
      1. Erasure
      2. Raw Types
    4. Parameterized Type Relationships
      1. Why Isn’t a List<Date> a List<Object>?
    5. Casts
    6. Writing Generic Classes
      1. The Type Variable
      2. Subclassing Generics
      3. Exceptions and Generics
      4. Parameter Type Limitations
    7. Bounds
      1. Erasure and Bounds (Working with Legacy Code)
    8. Wildcards
      1. A Supertype of All Instantiations
      2. Bounded Wildcards
      3. Thinking Outside the Container
      4. Lower Bounds
      5. Reading, Writing, and Arithmetic
      6. <?>, <Object>, and the Raw Type
      7. Wildcard Type Relationships
    9. Generic Methods
      1. Generic Methods Introduced
      2. Type Inference from Arguments
      3. Type Inference from Assignment Context
      4. Explicit Type Invocation
      5. Wildcard Capture
      6. Wildcard Types Versus Generic Methods
    10. Arrays of Parameterized Types
      1. Using Array Types
      2. What Good Are Arrays of Generic Types?
      3. Wildcards in Array Types
    11. Case Study: The Enum Class
    12. Case Study: The sort() Method
    13. Conclusion
  11. 9. Threads
    1. Introducing Threads
      1. The Thread Class and the Runnable Interface
      2. Controlling Threads
      3. Death of a Thread
    2. Threading an Applet
      1. Issues Lurking
    3. Synchronization
      1. Serializing Access to Methods
      2. Accessing class and instance Variables from Multiple Threads
      3. The wait() and notify() Methods
      4. Passing Messages
      5. ThreadLocal Objects
    4. Scheduling and Priority
      1. Thread State
      2. Time-Slicing
      3. Priorities
      4. Yielding
    5. Thread Groups
      1. Working with ThreadGroups
      2. Uncaught Exceptions
    6. Thread Performance
      1. The Cost of Synchronization
      2. Thread Resource Consumption
    7. Concurrency Utilities
      1. Executors
      2. Locks
      3. Synchronization Constructs
      4. Atomic Operations
    8. Conclusion
  12. 10. Working with Text
    1. Text-Related APIs
    2. Strings
      1. Constructing Strings
      2. Strings from Things
      3. Comparing Strings
      4. Searching
      5. Editing
      6. String Method Summary
      7. StringBuilder and StringBuffer
    3. Internationalization
      1. The java.util.Locale Class
      2. Resource Bundles
    4. Parsing and Formatting Text
      1. Parsing Primitive Numbers
      2. Tokenizing Text
    5. Printf-Style Formatting
      1. Formatter
      2. The Format String
      3. String Conversions
      4. Primitive and Numeric Conversions
      5. Flags
      6. Miscellaneous
    6. Formatting with the java.text Package
      1. MessageFormat
    7. Regular Expressions
      1. Regex Notation
      2. The java.util.regex API
  13. 11. Core Utilities
    1. Math Utilities
      1. The java.lang.Math Class
      2. Big/Precise Numbers
      3. Floating-Point Components
      4. Random Numbers
    2. Dates and Times
      1. Working with Calendars
      2. Time Zones
      3. Parsing and Formatting with DateFormat
      4. Printf-Style Date and Time Formatting
    3. Timers
    4. Collections
      1. The Collection Interface
      2. Iterator
      3. Collection Types
      4. The Map Interface
      5. Collection Implementations
      6. Hash Codes and Key Values
      7. Synchronized and Unsynchronized Collections
      8. Read-Only and Read-Mostly Collections
      9. WeakHashMap
      10. EnumSet and EnumMap
      11. Sorting Collections
      12. A Thrilling Example
    5. Properties
      1. Loading and Storing
      2. System Properties
    6. The Preferences API
      1. Preferences for Classes
      2. Preferences Storage
      3. Change Notification
    7. The Logging API
      1. Overview
      2. Logging Levels
      3. A Simple Example
      4. Logging Setup Properties
      5. The Logger
      6. Performance
    8. Observers and Observables
  14. 12. Input/Output Facilities
    1. Streams
      1. Basic I/O
      2. Character Streams
      3. Stream Wrappers
      4. Pipes
      5. Streams from Strings and Back
      6. Implementing a Filter Stream
    2. File I/O
      1. The java.io.File Class
      2. File Streams
      3. RandomAccessFile
      4. Resource Paths
    3. The NIO File API
      1. FileSystem and Path
      2. NIO File Operations
      3. Directory Operations
      4. Watching Paths
    4. Serialization
      1. Initialization with readObject()
      2. SerialVersionUID
    5. Data Compression
      1. Archives and Compressed Data
      2. Decompressing Data
      3. Zip Archive As a Filesystem
    6. The NIO Package
      1. Asynchronous I/O
      2. Performance
      3. Mapped and Locked Files
      4. Channels
      5. Buffers
      6. Character Encoders and Decoders
      7. FileChannel
      8. Scalable I/O with NIO
  15. 13. Network Programming
    1. Sockets
      1. Clients and Servers
      2. author="pat” timestamp="20120926T110720-0500” comment="one of those sections I hate to get rid of but is less relevant in terms of the example... should probably find a more modern example...”The DateAtHost Client
      3. The TinyHttpd Server
      4. Socket Options
      5. Proxies and Firewalls
    2. Datagram Sockets
      1. author="pat” timestamp="20120926T141346-0500” comment="I actually rewrote this as a standalone client but then decided to leave it as an applet”The HeartBeat Applet
      2. InetAddress
    3. Simple Serialized Object Protocols
      1. A Simple Object-Based Server
    4. Remote Method Invocation
      1. Real-World Usage
      2. Remote and Nonremote Objects
      3. An RMI Example
      4. RMI and CORBA
    5. Scalable I/O with NIO
      1. Selectable Channels
      2. Using Select
      3. LargerHttpd
      4. Nonblocking Client-Side Operations
  16. 14. Programming for the Web
    1. Uniform Resource Locators (URLs)
    2. The URL Class
      1. Stream Data
      2. Getting the Content as an Object
      3. Managing Connections
      4. Handlers in Practice
      5. Useful Handler Frameworks
    3. Talking to Web Applications
      1. Using the GET Method
      2. Using the POST Method
      3. The HttpURLConnection
      4. SSL and Secure Web Communications
      5. URLs, URNs, and URIs
    4. Web Services
      1. XML-RPC
      2. WSDL
      3. The Tools
      4. The Weather Service Client
  17. 15. Web Applications and Web Services
    1. Web Application Technologies
      1. Page-Oriented Versus “Single Page” Applications
      2. JSPs
      3. XML and XSL
      4. Web Application Frameworks
      5. Google Web Toolkit
      6. HTML5, AJAX, and More...
    2. Java Web Applications
      1. The Servlet Lifecycle
      2. Servlets
      3. The HelloClient Servlet
      4. The Servlet Response
      5. Servlet Parameters
      6. The ShowParameters Servlet
      7. User Session Management
      8. The ShowSession Servlet
      9. The ShoppingCart Servlet
      10. Cookies
      11. The ServletContext API
      12. Asynchronous Servlets
    3. WAR Files and Deployment
      1. Configuration with web.xml and Annotations
      2. URL Pattern Mappings
      3. Deploying HelloClient
      4. Error and Index Pages
      5. Security and Authentication
      6. Protecting Resources with Roles
      7. Secure Data Transport
      8. Authenticating Users
      9. Procedural Authorization
    4. Servlet Filters
      1. A Simple Filter
      2. A Test Servlet
      3. Declaring and Mapping Filters
      4. Filtering the Servlet Request
      5. Filtering the Servlet Response
    5. Building WAR Files with Ant
      1. A Development-Oriented Directory Layout
      2. Deploying and Redeploying WARs with Ant
    6. Implementing Web Services
      1. Defining the Service
      2. Our Echo Service
      3. Using the Service
      4. Data Types
    7. Conclusion
  18. 16. Swing
    1. Components
      1. Peers and Look-and-Feel
      2. The MVC Framework
      3. Painting
      4. Enabling and Disabling Components
      5. Focus, Please
      6. Other Component Methods
      7. Layout Managers
      8. Insets
      9. Z-Ordering (Stacking Components)
      10. The revalidate() and doLayout() Methods
      11. Managing Components
      12. Listening for Components
      13. Windows, Frames and Splash Screens
      14. Other Methods for Controlling Frames
      15. Content Panes
      16. Desktop Integration
    2. Events
      1. Event Receivers and Listener Interfaces
      2. Event Sources
      3. Event Delivery
      4. Event Types
      5. The java.awt.event.InputEvent Class
      6. Mouse and Key Modifiers on InputEvents
      7. Focus Events
    3. Event Summary
      1. Adapter Classes
      2. Dummy Adapters
    4. The AWT Robot!
    5. Multithreading in Swing
  19. 17. Using Swing Components
    1. Buttons and Labels
      1. HTML Text in Buttons and Labels
    2. Checkboxes and Radio Buttons
    3. Lists and Combo Boxes
    4. The Spinner
    5. Borders
    6. Menus
    7. Pop-Up Menus
      1. Component-Managed Pop Ups
    8. The JScrollPane Class
    9. The JSplitPane Class
    10. The JTabbedPane Class
    11. Scrollbars and Sliders
    12. Dialogs
      1. File Selection Dialog
      2. The Color Chooser
  20. 18. More Swing Components
    1. Text Components
      1. The TextEntryBox Application
      2. Formatted Text
      3. Filtering Input
      4. Validating Data
      5. Say the Magic Word
      6. Sharing a Data Model
      7. HTML and RTF for Free
      8. Managing Text Yourself
    2. Focus Navigation
      1. Trees
      2. Nodes and Models
      3. Save a Tree
      4. Tree Events
      5. A Complete Example
    3. Tables
      1. A First Stab: Freeloading
      2. Round Two: Creating a Table Model
      3. Round Three: A Simple Spreadsheet
      4. Sorting and Filtering
      5. Printing JTables
    4. Desktops
    5. Pluggable Look-and-Feel
    6. Creating Custom Components
      1. Generating Events
      2. A Dial Component
      3. Model and View Separation
  21. 19. Layout Managers
    1. FlowLayout
    2. GridLayout
    3. BorderLayout
    4. BoxLayout
    5. CardLayout
    6. GridBagLayout
      1. The GridBagConstraints Class
      2. Grid Coordinates
      3. The fill Constraint
      4. Spanning Rows and Columns
      5. Weighting
      6. Anchoring
      7. Padding and Insets
      8. Relative Positioning
      9. Composite Layouts
    7. Other Layout Managers
    8. Absolute Positioning
  22. 20. Drawing with the 2D API
    1. The Big Picture
    2. The Rendering Pipeline
    3. A Quick Tour of Java 2D
      1. Filling Shapes
      2. Drawing Shape Outlines
      3. Convenience Methods
      4. Drawing Text
      5. Drawing Images
      6. The Whole Iguana
    4. Filling Shapes
      1. Solid Colors
      2. Color Gradients
      3. Textures
      4. Desktop Colors
    5. Stroking Shape Outlines
    6. Using Fonts
      1. Font Metrics
    7. Displaying Images
      1. The Image Class
      2. Image Observers
      3. Scaling and Size
    8. Drawing Techniques
      1. Double Buffering
      2. Limiting Drawing with Clipping
      3. Offscreen Drawing
    9. Printing
  23. 21. Working with Images and Other Media
    1. Loading Images
      1. ImageObserver
      2. MediaTracker
      3. ImageIcon
      4. ImageIO
    2. Producing Image Data
      1. Drawing Animations
      2. BufferedImage Anatomy
      3. Color Models
      4. Creating an Image
      5. Updating a BufferedImage
    3. Filtering Image Data
      1. How ImageProcessor Works
      2. Converting an Image to a BufferedImage
      3. Using the RescaleOp Class
      4. Using the AffineTransformOp Class
    4. Saving Image Data
    5. Simple Audio
    6. Java Media Framework
  24. 22. JavaBeans
    1. What’s a Bean?
      1. What Constitutes a Bean?
    2. The NetBeans IDE
      1. Installing and Running NetBeans
    3. Properties and Customizers
    4. Event Hookups and Adapters
      1. Taming the Juggler
      2. Molecular Motion
    5. Binding Properties
      1. Constraining Properties
    6. Building Beans
      1. The Dial Bean
      2. Design Patterns for Properties
    7. Limitations of Visual Design
    8. Serialization Versus Code Generation
    9. Customizing with BeanInfo
      1. Getting Properties Information
    10. Handcoding with Beans
      1. Bean Instantiation and Type Management
      2. Working with Serialized Beans
      3. Runtime Event Hookups with Reflection
    11. BeanContext and BeanContextServices
    12. The Java Activation Framework
    13. Enterprise JavaBeans and POJO-Based Enterprise Frameworks
  25. 23. Applets
    1. The Politics of Browser-Based Applications
    2. Applet Support and the Java Plug-in
    3. The JApplet Class
      1. Applet Lifecycle
      2. The Applet Security Sandbox
      3. Getting Applet Resources
      4. The <applet> Tag
      5. Attributes
      6. Parameters
      7. ¿Habla Applet?
      8. The Complete <applet> Tag
      9. Loading Class Files
      10. Packages
      11. appletviewer
    4. Java Web Start
    5. Conclusion
  26. 24. XML
    1. The Butler Did It
    2. A Bit of Background
      1. Text Versus Binary
      2. A Universal Parser
      3. The State of XML
      4. The XML APIs
      5. XML and Web Browsers
    3. XML Basics
      1. Attributes
      2. XML Documents
      3. Encoding
      4. Namespaces
      5. Validation
      6. HTML to XHTML
    4. SAX
      1. The SAX API
      2. Building a Model Using SAX
      3. XMLEncoder/Decoder
    5. DOM
      1. The DOM API
      2. Test-Driving DOM
      3. Generating XML with DOM
      4. JDOM
    6. XPath
      1. Nodes
      2. Predicates
      3. Functions
      4. The XPath API
      5. XMLGrep
    7. XInclude
      1. Enabling XInclude
    8. Validating Documents
      1. Using Document Validation
      2. DTDs
      3. XML Schema
      4. The Validation API
    9. JAXB Code Binding and Generation
      1. Annotating Our Model
      2. Generating a Java Model from an XML Schema
      3. Generating an XML Schema from a Java Model
    10. Transforming Documents with XSL/XSLT
      1. XSL Basics
      2. Transforming the Zoo Inventory
      3. XSLTransform
      4. XSL in the Browser
    11. Web Services
    12. The End of the Book
  27. A. The Eclipse IDE
    1. The IDE Wars
    2. Getting Started with Eclipse
      1. Importing the Learning Java Examples
    3. Using Eclipse
      1. Getting at the Source
      2. The Lay of the Land
      3. Running the Examples
      4. Building the Ant-Based Examples
      5. Loner Examples
    4. Eclipse Features
      1. Coding Shortcuts
      2. Autocorrection
      3. Refactoring
      4. Diffing Files
      5. Organizing Imports
      6. Formatting Source Code
    5. Conclusion
  28. B. BeanShell: Java Scripting
    1. Running BeanShell
    2. Java Statements and Expressions
      1. Imports
    3. BeanShell Commands
    4. Scripted Methods and Objects
      1. Scripting Interfaces and Adapters
    5. Changing the Classpath
    6. Learning More . . .
  29. Glossary
  30. Index
  31. About the Authors
  32. Colophon
  33. Copyright
O'Reilly logo

Enter Generics

Generics are an enhancement to the syntax of classes that allow us to specialize the class for a given type or set of types. A generic class requires one or more type parameters wherever we refer to the class type and uses them to customize itself.

If you look at the source or Javadoc for the List class, for example, you’ll see it defined something like this:

    public class List< E > {
       ...
       public void add( E element ) { ... }
       public E get( int i ) { ... }
    }

The identifier E between the angle brackets (<>) is a type variable. It indicates that the class List is generic and requires a Java type as an argument to make it complete. The name E is arbitrary, but there are conventions that we’ll see as we go on. In this case, the type variable E represents the type of elements we want to store in the list. The List class refers to the type variable within its body and methods as if it were a real type, to be substituted later. The type variable may be used to declare instance variables, arguments to methods, and the return type of methods. In this case, E is used as the type for the elements we’ll be adding via the add() method and the return type of the get() method. Let’s see how to use it.

The same angle bracket syntax supplies the type parameter when we want to use the List type:

    List<String> listOfStrings;

In this snippet, we declared a variable called listOfStrings using the generic type List with a type parameter of String. String refers to the String class, but we could have specialized List with any Java class type. For example:

    List<Date> dates;
    List<java.math.BigDecimal> decimals;
    List<Foo> foos;

Completing the type by supplying its type parameter is called instantiating the type. It is also sometimes called invoking the type, by analogy with invoking a method and supplying its arguments. Whereas with a regular Java type, we simply refer to the type by name, a generic type must be instantiated with parameters wherever it is used.[21] Specifically, this means that we must instantiate the type everywhere types can appear as the declared type of a variable (as shown in this code snippet), as the type of a method argument, as the return type of a method, or in an object allocation expression using the new keyword.

Returning to our listOfStrings, what we have now is effectively a List in which the type String has been substituted for the type variable E in the class body:

    public class List< String > {
       ...
       public void add( String element ) { ... }
       public String get( int i ) { ... }
    }

We have specialized the List class to work with elements of type String and only elements of type String. This method signature is no longer capable of accepting an arbitrary Object type.

List is just an interface. To use the variable, we’ll need to create an instance of some actual implementation of List. As we did in our introduction, we’ll use ArrayList. As before, ArrayList is a class that implements the List interface, but in this case, both List and ArrayList are generic classes. As such, they require type parameters to instantiate them where they are used. Of course, we’ll create our ArrayList to hold String elements to match our List of Strings:

    List<String> listOfStrings = new ArrayList<String>
    List<String> listOfStrings = new ArrayList<>(); // Or shorthand in Java 7.0
                                                    //  and later

As always, the new keyword takes a Java type and parentheses with possible arguments for the class’s constructor. In this case, the type is ArrayList<String>—the generic ArrayList type instantiated with the String type.

Declaring variables as shown in the first line of the preceding example is a bit cumbersome because it requires us to type the generic parameter type twice (once on the left side in the variable type and once on the right in the initialing expression). And in complicated cases, the generic types can get very lengthy and nested within one another. In Java 7, the compiler is smart enough to infer the type of the initializing expression from the type of the variable to which you are assigning it. This is called generic type inference and boils down to the fact that you can shorthand the right side of your variable declarations by leaving out the contents of the <> notation, as shown in the example’s second line.

We can now use our specialized List with strings. The compiler prevents us from even trying to put anything other than a String object (or a subtype of String if there were any) into the list and allows us to fetch them with the get() method without requiring any cast:

    List<String> listOfStrings = new ArrayList<String>();
    listOfStrings.add("eureka! ");
    String s = listOfStrings.get(0); // "eureka! "

    listOfStrings.add( new Date() ); // Compile-time Error!

Let’s take another example from the Collections API. The Map interface provides a dictionary-like mapping that associates key objects with value objects. Keys and values do not have to be of the same type. The generic Map interface requires two type parameters: one for the key type and one for the value type. The Javadoc looks like this:

    public class Map< K, V > {
        ...
        public V put( K key, V value ) { ... } // returns any old value
        public V get( K key ) { ... }
    }

We can make a Map that stores Employee objects by Integer “employee ID” numbers like this:

    Map< Integer, Employee > employees = new HashMap< Integer, Employee >();
    Integer bobsId = ...;
    Employee bob = ...;

    employees.put( bobsId, bob );
    Employee employee = employees.get( bobsId );

Here, we used HashMap, which is a generic class that implements the Map interface, and instantiated both types with the type parameters Integer and Employee. The Map now works only with keys of type Integer and holds values of type Employee.

The reason we used Integer here to hold our number is that the type parameters to a generic class must be class types. We can’t parameterize a generic class with a primitive type, such as int or boolean. Fortunately, autoboxing of primitives in Java (see Chapter 5) makes it almost appear as if we can by allowing us to use primitive types as though they were wrapper types:

    employees.put( 42, bob );
    Employee bob = employees.get( 42 );

Here, autoboxing converted the integer 42 to an Integer wrapper for us twice.

In Chapter 11, we’ll see that all of the Java collection classes and interfaces are generic. Furthermore, dozens of other APIs use generics to let you adapt them to specific types. We’ll talk about them as they occur throughout the book.

Talking About Types

Before we move on to more important things, we should say a few words about the way we describe a particular parameterization of a generic class. Because the most common and compelling case for generics is for container-like objects, it’s common to think in terms of a generic type “holding” a parameter type. In our example, we called our List<String> a “list of strings” because, sure enough, that’s what it was. Similarly, we might have called our employee map a “Map of employee IDs to Employee objects.” However, these descriptions focus a little more on what the classes do than on the type itself. Take instead a single object container called Trap< E > that could be instantiated on an object of type Mouse or of type Bear; that is, Trap<Mouse> or Trap<Bear>. Our instinct is to call the new type a “mouse trap” or “bear trap.” Similarly, we could have thought of our list of strings as a new type: “string list” or our employee map as a new “integer employee object map” type. You may use whatever verbiage you prefer, but these latter descriptions focus more on the notion of the generic as a type and may help a little bit later when we discuss how generic types are related in the type system. There we’ll see that the container terminology turns out to be a little counterintuitive.

In the following section, we’ll continue our discussion of generic types in Java from a different perspective. We’ve seen a little of what they can do; now we need to talk about how they do it.



[21] That is, unless you want to use a generic type in a nongeneric way. We’ll talk about “raw” types later in this chapter.

The best content for your career. Discover unlimited learning on demand for around $1/day.