You are previewing Lasers and Electro-optics, Second Edition.
O'Reilly logo
Lasers and Electro-optics, Second Edition

Book Description

Covering a broad range of topics in modern optical physics and engineering, this textbook is invaluable for undergraduate students studying laser physics, optoelectronics, photonics, applied optics and optical engineering. This new edition has been re-organized, and now covers many new topics such as the optics of stratified media, quantum well lasers and modulators, free electron lasers, diode-pumped solid state and gas lasers, imaging and non-imaging optical systems, squeezed light, periodic poling in nonlinear media, very short pulse lasers and new applications of lasers. The textbook gives a detailed introduction to the basic physics and engineering of lasers, as well as covering the design and operational principles of a wide range of optical systems and electro-optic devices. It features full details of important derivations and results, and provides many practical examples of the design, construction and performance characteristics of different types of lasers and electro-optic devices.

Table of Contents

  1. Cover
  2. Half Title
  3. Title
  4. Copyrights
  5. Contents
  6. Preface to the Second Edition
  7. 1 Electromagnetic waves, light, and lasers
    1. 1.1 The laser
    2. 1.2 Light and electromagnetic waves
    3. 1.3 Some basic electromagnetic theory
    4. 1.4 The polarization state of an electromagnetic wave
    5. 1.5 Electromagnetic waves and their propagation through matter
    6. 1.6 Spontaneous and stimulated transitions
    7. 1.7 Lasers as oscillators
    8. 1.8 The energy levels of atoms, molecules, and condensed matter
    9. 1.9 Amplification at optical frequencies
    10. 1.10 The relation between energy density and intensity
    11. 1.11 The intensity of a beam of electromagnetic radiation in terms of photon flux
    12. 1.12 Black-body radiation
    13. 1.13 The relation between the Einstein A and B coefficients
    14. 1.14 The effect of level degeneracy
    15. 1.15 The ratio of spontaneous and stimulated transitions
    16. 1.16 Problems
    17. Further reading
    18. References
  8. 2 Optical frequency amplifiers
    1. 2.1 Introduction
    2. 2.2 Homogeneous line broadening
    3. 2.3 Inhomogeneous broadening
    4. 2.4 Optical frequency amplification
    5. 2.5 Optical frequency oscillation – saturation
    6. 2.6 The power output from a laser amplifier
    7. 2.7 The electron oscillator model of a radiative transition
    8. 2.8 The classical oscillator explanation for stimulated emission
    9. 2.9 Problems
    10. References
  9. 3 An introduction to two practical laser systems
    1. 3.1 Introduction
    2. 3.2 Three- and four-level lasers
    3. 3.3 The ruby laser
    4. 3.4 The helium–neon laser
    5. References
  10. 4 Optical resonators containing amplifying media
    1. 4.1 Introduction
    2. 4.2 Optical resonators containing amplifying media
    3. 4.3 The oscillation frequency
    4. 4.4 Multimode laser oscillation
    5. 4.5 Mode-beating
    6. 4.6 The power output of a laser
    7. 4.7 Optimum coupling
    8. 4.8 Problems
    9. References
  11. 5 Laser radiation
    1. 5.1 Introduction
    2. 5.2 Diffraction
    3. 5.3 Babinet’s principle
    4. 5.4 Two parallel narrow slits
    5. 5.5 A single slit
    6. 5.6 Two-dimensional apertures
    7. 5.7 Laser modes
    8. 5.8 Beam divergence
    9. 5.9 The linewidth of laser radiation
    10. 5.10 Coherence properties
    11. 5.11 Interference
    12. 5.12 Problems
    13. References
  12. 6 Control of laser oscillators
    1. 6.1 Introduction
    2. 6.2 Multimode operation
    3. 6.3 Single-longitudinal-mode operation
    4. 6.4 Mode-locking
    5. 6.5 Methods of mode-locking
    6. 6.6 Pulse compression
    7. 6.7 Attosecond pulses
    8. References
  13. 7 Optically pumped solid-state lasers
    1. 7.1 Introduction
    2. 7.2 Optical pumping in three- and four-level lasers
    3. 7.3 Pulsed versus continuous-wave operation
    4. 7.4 Threshold population inversion and the stimulated-emission cross-section
    5. 7.5 Paramagnetic-ion solid-state lasers
    6. 7.6 The Nd:YAG laser
    7. 7.7 Continuous-wave operation of the Nd:YAG laser
    8. 7.8 The Nd[sup(3+)] glass laser
    9. 7.9 Geometrical arrangements for optical pumping
    10. 7.10 High-power pulsed solid-state lasers
    11. 7.11 Diode-pumped solid-state lasers
    12. 7.12 Fiber lasers
    13. 7.13 Relaxation oscillations (spiking)
    14. 7.14 Rate equations for relaxation oscillation
    15. 7.15 Undamped relaxation oscillations
    16. 7.16 Giant-pulse ( Q -switched) lasers
    17. 7.17 A theoretical description of the Q -switching process
    18. 7.18 Problem
    19. References
  14. 8 Gas lasers
    1. 8.1 Introduction
    2. 8.2 Excitation schemes
    3. 8.3 The argon-ion laser
    4. 8.4 Pumping saturation in gas-laser systems
    5. 8.5 Pulsed gas lasers
    6. 8.6 Continuous-wave ion lasers
    7. 8.7 “Metal”-vapor ion lasers
    8. 8.8 Gas discharges for exciting gas lasers
    9. 8.9 Rate equations for gas-discharge lasers
    10. 8.10 Problem
    11. References
  15. 9 Molecular gas lasers I
    1. 9.1 Introduction
    2. 9.2 The energy levels of molecules
    3. 9.3 Vibrations of a polyatomic molecule
    4. 9.4 Rotational energy states
    5. 9.5 Rotational populations
    6. 9.6 The overall energy state of a molecule
    7. 9.7 The carbon dioxide laser
    8. 9.8 The carbon monoxide laser
    9. 9.9 Other gas-discharge molecular lasers
    10. References
  16. 10 Molecular gas lasers II
    1. 10.1 Introduction
    2. 10.2 Gas transport lasers
    3. 10.3 Gas dynamic lasers
    4. 10.4 High-pressure pulsed gas lasers
    5. 10.5 Ultraviolet molecular gas lasers
    6. 10.6 Photodissociation lasers
    7. 10.7 Chemical lasers
    8. 10.8 Far-infrared lasers
    9. 10.9 Problem
    10. References
  17. 11 Tunable lasers
    1. 11.1 Introduction
    2. 11.2 The titanium–sapphire laser
    3. 11.3 Organic dye lasers
    4. 11.4 Calculation of threshold pump power in dye lasers
    5. 11.5 Inorganic liquid lasers
    6. 11.6 Free-electron lasers
    7. 11.7 Problems
    8. References
  18. 12 Semiconductor lasers
    1. 12.1 Introduction
    2. 12.2 Semiconductor physics background
    3. 12.3 Carrier concentrations
    4. 12.4 Intrinsic and extrinsic semiconductors
    5. 12.5 The p–n junction
    6. 12.6 Recombination and luminescence
    7. 12.7 Heterojunctions
    8. 12.8 Semiconductor lasers
    9. 12.9 The gain coefficient of a semiconductor laser
    10. 12.10 Threshold current and power–voltage characteristics
    11. 12.11 Longitudinal and transverse modes
    12. 12.12 Quantum-well lasers
    13. 12.13 Semiconductor laser structures
    14. 12.14 Surface-emitting lasers
    15. 12.15 Laser diode arrays and broad-area lasers
    16. 12.16 Blue–green lasers
    17. 12.17 Quantum cascade lasers
    18. 12.18 Silicon lasers
    19. 12.19 Modulation of semiconductor lasers
    20. 12.20 Problems
    21. Further reading
    22. References
  19. 13 Passive optical systems
    1. 13.1 Introduction
    2. 13.2 The propagation of rays and waves through isotropic media
    3. 13.3 Simple reflection and refraction analysis
    4. 13.4 Paraxial-ray analysis
    5. 13.5 Non-imaging light collectors
    6. 13.6 Generalized imaging systems
    7. 13.7 The numerical aperture
    8. 13.8 Apertures, stops, and pupils
    9. 13.9 Vignetting
    10. 13.10 Exact ray tracing and aberrations
    11. 13.11 Chromatic aberrations
    12. 13.12 Geometrical aberrations
    13. 13.13 Spot diagram
    14. 13.14 The modulation transfer function
    15. 13.15 The use of impedances in optics
    16. 13.16 Problems
    17. References
  20. 14 Periodic optical systems, resonators, and inhomogeneous media
    1. 14.1 Introduction
    2. 14.2 Plane waves in media with complex refractive indices
    3. 14.3 Negative-refractive-index materials
    4. 14.4 Structures with periodically varying dielectric properties
    5. 14.5 The transfer matrix for a single slab
    6. 14.6 The etalon
    7. 14.7 A thin metal film
    8. 14.8 A stratified medium of multiple slabs
    9. 14.9 Fiber Bragg gratings
    10. 14.10 Analysis of multi-layer structures by impedance techniques
    11. 14.11 Photonic crystals
    12. 14.12 Periodic lens sequences
    13. 14.13 The identical-thin-lens waveguide
    14. 14.14 The propagation of rays in mirror resonators
    15. 14.15 The propagation of rays in isotropic media with refractive-index gradients
    16. 14.16 Media with a Gaussian radial index variation
    17. 14.17 The propagation of spherical waves
    18. 14.18 Problems
    19. References
  21. 15 The optics of Gaussian beams
    1. 15.1 Introduction
    2. 15.2 Beam-wave solutions of the wave equation
    3. 15.3 Higher-order modes
    4. 15.4 Transformation of Gaussian beams by general optical systems
    5. 15.5 The transformation of a Gaussian beam by a lens
    6. 15.6 Gaussian beams in lens waveguides
    7. 15.7 The propagation of a Gaussian beam in a medium with a quadratic refractive-index profile
    8. 15.8 The propagation of Gaussian beams in media with spatial gain or absorption variations
    9. 15.9 Propagation in a medium with a parabolic gain profile
    10. 15.10 Gaussian beams in plane and spherical mirror resonators
    11. 15.11 Symmetrical resonators
    12. 15.12 Examples of resonator design
    13. 15.13 Diffraction losses
    14. 15.14 Unstable resonators
    15. 15.15 Other beam waves
    16. 15.16 Problems
    17. References
  22. 16 Optical fibers and waveguides
    1. 16.1 Introduction
    2. 16.2 Ray theory of cylindrical optical fibers
    3. 16.3 Ray theory of a dielectric-slab guide
    4. 16.4 The Goos–Hänchen shift
    5. 16.5 Wave theory of the dielectric-slab guide
    6. 16.6 P waves in the slab guide
    7. 16.7 Dispersion curves and field distributions in a slab waveguide
    8. 16.8 S waves in the slab guide
    9. 16.9 Practical slab guide geometries
    10. 16.10 Cylindrical dielectric waveguides
    11. 16.11 Modes and field patterns
    12. 16.12 The weakly guiding approximation
    13. 16.13 Mode patterns
    14. 16.14 Cutoff frequencies
    15. 16.15 Multimode fibers
    16. 16.16 Fabrication of optical fibers
    17. 16.17 Dispersion in optical fibers
    18. 16.18 Holey fibers
    19. 16.19 Solitons
    20. 16.20 Erbium-doped fiber amplifiers
    21. 16.21 Coupling optical sources and detectors to fibers
    22. 16.22 Problems
    23. References
  23. 17 The optics of anisotropic media
    1. 17.1 Introduction
    2. 17.2 The dielectric tensor
    3. 17.3 Stored electromagnetic energy in anisotropic media
    4. 17.4 Propagation of monochromatic plane waves in anisotropic media
    5. 17.5 The two possible directions of D for a given wave vector are orthogonal
    6. 17.6 Angular relationships involving D, E, H, k, and the Poynting vector S
    7. 17.7 The indicatrix
    8. 17.8 Uniaxial crystals
    9. 17.9 Index surfaces
    10. 17.10 Other surfaces related to the uniaxial indicatrix
    11. 17.11 Huygenian constructions
    12. 17.12 Retardation
    13. 17.13 Biaxial crystals
    14. 17.14 Intensity transmission through polarizer/waveplate/polarizer combinations
    15. 17.15 The Jones calculus
    16. 17.16 Mueller calculus
    17. 17.17 Problems
    18. References
  24. 18 The electro-optic and acousto-optic effects and modulation of light beams
    1. 18.1 Introduction to the electro-optic effect
    2. 18.2 The linear electro-optic effect
    3. 18.3 The quadratic electro-optic effect
    4. 18.4 Longitudinal electro-optic modulation
    5. 18.5 Transverse electro-optic modulation
    6. 18.6 Electro-optic amplitude modulation
    7. 18.7 Electro-optic phase modulation
    8. 18.8 High-frequency waveguide electro-optic modulators
    9. 18.9 Other high-frequency electro-optic devices
    10. 18.10 Electro-absorption modulators
    11. 18.11 Electro-optic beam deflectors
    12. 18.12 Acousto-optic modulators
    13. 18.13 Applications of acousto-optic modulators
    14. 18.14 Construction and materials for acousto-optic modulators
    15. 18.15 Problem
    16. References
  25. 19 Introduction to nonlinear processes
    1. 19.1 Introduction
    2. 19.2 Anharmonic potentials and nonlinear polarization
    3. 19.3 Nonlinear susceptibilities and mixing coefficients
    4. 19.4 Second-harmonic generation
    5. 19.5 The linear electro-optic effect
    6. 19.6 Parametric and other nonlinear processes
    7. 19.7 Macroscopic and microscopic susceptibilities
    8. 19.8 Problem
    9. References
  26. 20 Wave propagation in nonlinear media
    1. 20.1 Introduction
    2. 20.2 Electromagnetic waves and nonlinear polarization
    3. 20.3 Second-harmonic generation
    4. 20.4 The effective nonlinear coefficient d[sub(eff)]
    5. 20.5 Phase matching
    6. 20.6 Beam walk-off and 90° phase matching
    7. 20.7 Second-harmonic generation with Gaussian beams
    8. 20.8 Up-conversion and difference-frequency generation
    9. 20.9 Optical parametric amplification
    10. 20.10 Parametric oscillators
    11. 20.11 Parametric-oscillator tuning
    12. 20.12 Phase conjugation
    13. 20.13 Optical bistability
    14. 20.14 Practical details of the use of crystals for nonlinear applications
    15. 20.15 Problems
    16. References
  27. 21 Detection of optical radiation
    1. 21.1 Introduction
    2. 21.2 Noise
    3. 21.3 Detector performance parameters
    4. 21.4 Practical characteristics of optical detectors
    5. 21.5 Thermal detectors
    6. 21.6 Detection limits for optical detector systems
    7. 21.7 Coherent detection
    8. 21.8 The bit-error rate
    9. 21.9 Problems
    10. References
  28. 22 Coherence theory
    1. 22.1 Introduction
    2. 22.2 Square-law detectors
    3. 22.3 The analytic signal
    4. 22.4 Correlation functions
    5. 22.5 Temporal coherence
    6. 22.6 Spatial coherence
    7. 22.7 Spatial coherence with an extended source
    8. 22.8 Propagation laws of partial coherence
    9. 22.9 Propagation from a finite plane surface
    10. 22.10 The van Cittert–Zernike theorem
    11. 22.11 The spatial coherence of a quasi-monochromatic, uniform, spatially incoherent circular source
    12. 22.12 Intensity-correlation interferometry
    13. 22.13 Intensity fluctuations
    14. 22.14 Photon statistics
    15. 22.15 The Hanbury Brown–Twiss interferometer
    16. 22.16 The Hanbury Brown–Twiss experiment with photon-count correlations
    17. 22.17 Squeezed light
    18. References
  29. 23 Laser applications
    1. 23.1 Optical communication systems
    2. 23.2 Optical amplification and wavelength-division multiplexing
    3. 23.3 Holography
    4. 23.4 Medical applications of lasers
    5. 23.5 Laser weapons
    6. 23.6 Laser isotope separation
    7. 23.7 Laser plasma generation and fusion
    8. References
  30. Appendix 1 Optical terminology
  31. Appendix 2 The δ -function
  32. Appendix 3 Black-body radiation formulas
  33. Appendix 4 RLC circuits
  34. Appendix 5 Storage and transport of energy by electromagnetic fields
  35. Appendix 6 The reflection and refraction of a plane electromagnetic wave at a boundary between two isotropic media of different refractive indices
  36. Appendix 7 The vector differential equation for light rays
  37. Appendix 8 Symmetry properties of crystals and the 32 crystal classes
  38. Appendix 9 Tensors
  39. Appendix 10 Bessel-function relations
  40. Appendix 11 Green’s functions
  41. Appendix 12 Recommended values of some physical constants
  42. Index