The CORBA Architecture

At its core, the CORBA architecture for distributed objects shares many features with the architecture used by Java RMI. A description of a remote object is used to generate a client stub interface and a server skeleton interface for the object. A client application invokes methods on a remote object using the client stub. The method request is transmitted through the underlying infrastructure to the remote host, where the server skeleton for the object is asked to invoke the method on the object itself. Any data resulting from the method call (return values, exceptions) is transmitted back to the client by the communication infrastructure.

But that’s where the similarities between CORBA and RMI end. CORBA was designed from the start to be a language-independent distributed object standard, so it is much more extensive and detailed in its specification than RMI is (or needs to be). For the most part, these extra details are required in CORBA because it needs to support languages that have different built-in features. Some languages, like C++, directly support objects, while others, like C, don’t. The CORBA standard needs to include a detailed specification of an object model so that non-object-oriented languages can take advantage of CORBA. Java includes built-in support for communicating object interfaces and examining them abstractly (using Java bytecodes and the Java Reflection API). Many other languages don’t. So the CORBA specification includes details ...

Get Java Enterprise in a Nutshell, Third Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.